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Abstract. We report on the development and online testing of an EEG-based brain-

computer interface (BCI) that aims to be usable by completely paralysed users—for

whom visual or motor-system-based BCIs may not be suitable, and among whom

reports of successful BCI use have so far been very rare. The current approach

exploits covert shifts of attention to auditory stimuli in a dichotic-listening stimulus

design. To compare the efficacy of event-related potentials (ERPs) and steady-state

auditory evoked potentials (SSAEPs), the stimuli were designed such that they elicited

both ERPs and SSAEPs simultaneously. Trial-by-trial feedback was provided online,

based on subjects’ modulation of N1 and P3 ERP components measured during single

5-second stimulation intervals. All 13 healthy subjects were able to use the BCI,

with performance in a binary left/right choice task ranging from 75% to 96% correct

across subjects (mean 85%). BCI classification was based on the contrast between

stimuli in the attended stream and stimuli in the unattended stream, making use of

every stimulus, rather than contrasting frequent standard and rare “oddball” stimuli.

SSAEPs were assessed offline: for all subjects, spectral components at the two exactly-

known modulation frequencies allowed discrimination of pre-stimulus from stimulus

intervals, and of left-only stimuli from right-only stimuli when one side of the dichotic

stimulus pair was muted. However, attention-modulation of SSAEPs was not sufficient

for single-trial BCI communication, even when the subject’s attention was clearly

focused well enough to allow classification of the same trials via ERPs. ERPs clearly

provided a superior basis for BCI. The ERP results are a promising step towards the

development of a simple-to-use, reliable yes/no communication system for users in the

most severely paralysed states, as well as potential attention-monitoring and -training

applications outside the context of assistive technology.
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1. Introduction

The aim of research into brain-computer interfaces (BCIs) is to develop systems

that allow a person to interact with his or her environment using signals from the

brain, without the need for any muscular movement or peripheral nervous system

involvement—for example, to allow a completely paralysed person to communicate.

Total or near-total paralysis can result in cases of brain-stem stroke, cerebral palsy,

and amytrophic lateral sclerosis (ALS, also known as Lou Gehrig’s disease) among

other disorders. It has been shown [1] that some people in a “locked-in” state

(LIS), in which most cognitive functions are intact despite almost-complete paralysis,

can learn to communicate via an interface that interprets electrical signals from the

brain, measured externally by electro-encephalogram (EEG). However, for people in

the so-called “completely-locked-in” or “totally-locked-in” state (CLIS or TLIS), in

which absolutely no communication is possible via muscular movement, successful

communication even via BCI has proved more elusive [2]—although there have been

some encouraging early reports of success [3].

There is, therefore, still considerable room for development of BCI systems targeted

at those people, in the most-severely paralysed states, who need the technology most.

The majority of BCI studies have so far been devoted to one of two approaches: the

first approach is the exploitation of event-related potentials (ERPs) in response to visual

stimuli [after 4, 5]. However, this is rather unsuitable for people in TLIS, whose eye

movements are uncontrollable or entirely absent—among other problems, the inability

to direct their gaze, focus to the desired depth, or blink their eyes to prevent corneal

disease and eye infections, all tend to add up to very poor spatial vision or none at all.

The second popular approach is based on signals from the motor and pre-motor cortex

in response to imagined muscle movements However, since TLIS often results from

progressive degeneration of the motor system, it is still unclear for how long users in

TLIS, having hypothetically made the breakthrough of using such a system successfully

in TLIS, might continue to be able to rely on motor-system signals in this way.

Hence there is considerable motivation to continue exploring BCI modalities that

have been relatively little explored in the literature: those based on non-motor mental

tasks such as the mental calculation and music imagery tasks used by Naito et al.

[3], or those based on attention to tactile stimuli [e.g. 6, 7] or auditory stimuli

[8, 9, 10, 11, 12, 13, 14, 15]. The current design is a development of the first such

auditory approach to be published [8]. It is based on voluntary shifts of attention

in a two-stream (and in the current paper, dichotic) listening task. Two sequences or

“streams” of auditory stimuli are played simultaneously, and the user may make a binary

decision by focusing on one stream and ignoring the other. This leads to a modulation

of ERPs in response to the stimuli of the two streams—an effect reported in 1973 by

Hillyard et al. [16], which Hill et al. [8] showed could be classified on a single-trial basis
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for potential use in BCI.

1.1. BCIs driven by Auditory Event-Related Potentials

Various auditory-ERP-based BCI approaches have been reported since 2005. In

table 1.1, these are categorized according to whether they used a streaming or

sequential stimulus arrangement.

In streaming approaches, users may or may not be asked to monitor the attended

stream for particular (relatively infrequent) target stimuli. However, the BCI is driven

not by the contrast of target responses vs. non-target responses, but rather by the

contrast between responses to stimuli in the attended stream vs. responses to stimuli in

the unattended stream. The stimuli used for this contrast could be non-targets, targets

(if present in the design), or both.

In sequential approaches, by contrast, the user monitors a single stream for a target

stimulus, and it is the brain response to the target that carries the crucial information.

This has a disadvantage in the two-class case, that the system must wait longer between

information-bearing stimuli. However, it has the distinct advantage that the stream

may consist of a large number of different targets, allowing a multi-way choice. Two or

more multi-way choices, made in succession, allow a letter to be selected in a spelling

application, provided the user is sufficiently familiar with the layout of letters in, for

example, a grid [10, 17, 11, 15] or a nested pattern of hexagons [14]. For a subject able

to use both systems, a fully-fledged spelling application is clearly superior to a binary

chooser considered in isolation. For now, however, our aim is not to design a full speller,

but rather to create a reliable binary interface that places little demand on working

memory. The long-term aim is that this might be useful for re-establishing simple,

initial contact with a person who has entered the totally-locked-in state—either as a

basis for, or as a stepping-stone towards, more sophisticated communication. Hence, we

continue to pursue the streaming method.

Table 1.1 also categorizes the studies as presenting either “offline” or “online”

analyses. Both of the streaming studies, and some of the sequential studies, assessed

classification performance offline (i.e. by dividing data into training and test sets after

all the data were gathered). A vital step in developing such methods for BCI is to

ensure that the system works online (i.e. that the system can act on its interpretation

of a decision made by the user, and report this to the user, in time for the user to make

the next decision). One function of the current paper is therefore to provide an in-depth

assessment of online performance of the streaming approach. The second goal is to use

the online attention paradigm as a platform for investigating the usefulness of a second

class of brain signal, as described in the following section.

1.2. Steady-State Evoked Potentials

A very different approach to auditory stimulus-driven BCI was attempted by Kallenberg

[22] using a streaming design, and by Farquhar et al. [23] using both streaming and
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Study Interface design Stimulus Arrangement Analysis

Hill et al. 2005 [8] binary choice streaming offline

Sellers & Donchin 2006 [9] 4-way choice sequential offline

Furdea et al. 2009 [10, 17] 5+5-choice speller sequential online

Klobassa et al. 2009 [11] 6+6-choice speller sequential online

Kanoh et al. 2010 [12] binary choice streaming offline

Halder et al. 2010 [13] binary choice sequential offline

Schreuder et al. 2009,2010 [18, 14] 6+6-choice speller sequential offline

Schreuder et al. 2011 [19] 6+6-choice speller sequential online

Belitski et al. 2011 [20] 6+6-choice speller sequential online

Höhne et al. 2010,2011 [21, 15]: 9-choice speller sequential online

Table 1. Auditory-ERP-based BCI studies

sequential designs. Here, the focus was on a different class of brain responses known

as steady-state auditory evoked potentials (SSAEP) or auditory steady-state responses

(ASSR). These are sustained responses to continuous, fluctuating stimuli [24]. They

are typically elicited by trains of click stimuli, tone pulses, or amplitude-modulated

tones, with a repetition or modulation rate between 20 and 100 Hz. The resulting brain

response can be localized in primary (and, for lower frequencies, also secondary) auditory

cortex [25] and are frequency-matched and phase-locked to the modulation. Ross et al.

[26] found that the largest signal-to-noise ratio was produced by modulation frequencies

around 40Hz, and indeed this is the frequency typically used in many SSAEP studies.

For BCI use, first the signal needs to be able to be modified by the user’s voluntary

shifts of attention; second, this modulation needs to be detectable on a single-trial basis,

where a “trial” lasts some reasonably small number of seconds. Steady-state evoked

potentials in other modalities have been shown to meet these criteria. Visual SSEPs are

well-established as a basis for BCI, with users able to modulate them by overt [27] or

covert [28, 29, 30] shifts of attention to spatial [27, 28] or non-spatial [29, 30] aspects of

a stimulus array. Promising results have also been shown for somatosensory SSEPs [6].

Auditory SSEPs, however, have had more difficulty in living up to this promise. A

1987 EEG study [31] failed to find any significant attention-modulation of SSAEPs at

all, and it took another 17 years for a measurable effect to be found: first in MEG using

a cross-modal paradigm [32], then using pure-auditory streaming designs in ECoG [33]

and MEG[34], and finally in EEG using a sequential design [35].

In their attempts at single-trial classification, both Kallenberg [22] and Farquhar

et al. [23] report performance below that is mostly below 65%. This is well below the

level of performance at which one can expect to construct any kind of BCI system for

independent use. Lopez et al. [36] also reported significant attention-modulation of

SSAEPs in their offline analysis of a BCI-like experiment, but concluded that the effect

may still be too weak for practical use since the time required per trial (over 40 seconds)
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was excessively long. Most recently, Kim et al. [37] have shown slightly more encouraging

preliminary results from an SSAEP-based BCI system using 20-second stimuli (however,

see the Discussion section, below). Note that offline performance levels in all these

studies was significantly above chance: they do at least, therefore, add to the evidence

that SSAEPs can be modulated by attention at all . However, for BCI, which requires

high classification accuracy in a short time, the results seem discouraging.

Nonetheless, it is impossible to draw definitive conclusions from studies that fail to

find a large effect, since any such failure can be ascribed to a large number of potential

factors. For example, these previous studies did not verify, in any independent and

objective way, the extent to which subjects were able to focus their attention on one

stimulus and ignore the other. It may be, therefore, that some aspect of the stimulus or

task design made it difficult for subjects to shift their attention optimally. The current

study aims to control for this possibility: it uses the existing auditory-ERP-based BCI

design to confirm that subjects can indeed modulate their attention in a single-trial-

classifiable way, while at the same time, and in the same stimuli, introducing frequency

“tagging” to examine the effects of attention on SSAEPs.

2. Methods

2.1. Subjects

Subjects were 13 healthy participants (9 male, 4 female) with an age range of 23–37

years (27.8 ± 4.6). All subjects were right-handed, had corrected-to-normal vision and

no history of significant hearing defects. They had answered public advertisements for

experimental subjects, had given informed consent, and were paid for their participation.

Experiments were performed at, and approved by, the Max Planck Institute for

Biological Cybernetics. No subjects were excluded from the analysis.

2.2. Stimuli and task design

One trial was defined as the attempt to make one binary choice (left or right). One

block consisted of 20 trials and lasted about 5 mins. After each block, the subject could

rest for a few minutes if they so desired. In a single sitting lasting two hours (excluding

setup), each subject performed ten 20-trial blocks of the normal attention condition,

for a total of 200 attention trials. For comparison with the studies of Kallenberg [22] and

Farquhar et al. [23], a perception condition was included: here, the instructions and

task are the same, as are the stimuli except in that the unattended stream is silent. Two

20-trial blocks of the perception condition were performed: one right at the beginning

of the measurement period (which helped in introducing the task to the subject) and

one half-way though the session between attention blocks, for a total of 40 perception

trials per subject.

At the start of each trial, subjects were given a visual cue (either the word “LEFT”

or the word “RIGHT” appearing in the centre of the screen for 2 seconds) instructing
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them which stream to attend to. Half the trials in a given block were left, and half were

right, in random order. The very last block was an exception to this: it was a free-

choice attention block in which, instead of an explicit instruction, the word “CHOOSE”

appeared for 3 seconds, during which subjects decided freely whether to choose left or

right, and wrote their choice down on paper. The purpose of this was to verify, for the

benefit of both subject and experimenter, that the system’s classification performance

must be based on the EEG input alone.

Subjects were instructed that, from the moment the cue appeared, they should

keep their gaze fixed on the centre of the screen, and refrain as much as possible from

blinking, swallowing or moving. After 2 seconds (or 3 in the free-choice block), the cue

was replaced by a fixation cross and the sound stimulus began.

The stimulus is illustrated in Figure 1. It lasted 5 seconds in total including 250-

msec attack and decay periods. The stimulus was dichotic: a different stimulus stream

was presented to each ear. Each stream consisted of an anti-aliased sawtooth carrier

wave (500 Hz on the left, 769.231 Hz on the right), amplitude-modulated to 100% depth

by a sine wave (41.667 Hz on the left, 38.462 Hz on the right). For most of the time,

the peak-to-peak amplitude of the stimulus was at 30% of the soundcard’s maximum

output. However, starting at 504 msec on the left, and 598 msec on the right, the

stimulus began to “pulse”: that is, with a raised-cosine attack of 5 msec, a plateau

lasting 45 msec, and a decay of 50 msec, the amplitude of the stimulus was raised to

100% output. These pulses were repeated with a period of 504 msec (left) and 546 msec

(right), for a total of 8 on the left and 7 on the right. The pulses were designed to elicit

ERPs, analogously to the beeps of Hill et al. [8].

These parameters were chosen by hand over the course of several exploratory

parameterizations and pilot experiments, to meet multiple criteria: AM frequencies

should be as close as possible to 40 Hz (in order to produce measurable SSAEP responses

from as many subjects as possible) while still being distinguishable from each other in

the EEG; AM cycles should last an integer number of EEG samples (to aid in analysis);

carrier frequencies should be integer multiples of the modulation frequency (to aid in

stimulus generation); pulse periods should be such that responses to pulses on the left

are minimally correlated with responses to pulses on the right when averaged over the

whole stimulus (as in Hill et al. [8]); the pulses should sound, subjectively, like they are

“part of” the 30%-amplitude background trilling of their respective streams; finally and

most importantly, it should be as easy as possible to focus one’s attention on one stream

and ignore the other, there being as little as possible perceptual “binding” between the

two streams. The streams’ opposite laterality, their differing carrier, modulation and

pulse frequencies, and the temporal offset between the first pulses on each side, all

contributed to this.

Before the experiment began, subjects were asked to listen to the stimulus a few

times while adjusting the volume of the left and right headphone outputs using two

analog sliders. The criteria were that the volume should be comfortable, and that

attending to the left stream and ignoring the right should be, subjectively, equally easy
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Figure 1. An example of the dichotic stimulus used on each trial. Amplitude-

modulation at close to 40 Hz induces auditory steady-state responses, whereas the

periodic “pulsing” induces event-related potentials. Target pulses for the counting

task are longer than standard pulses (in this example there are 3 targets in the left

stream and 1 in the right).

as vice versa.

Since our design included a target-counting task, one final aspect of the stimulus

design was that a minority of the pulses were longer in duration. The first two pulses

on each side were always standard 100-msec pulses. After this, the remaining pulse

sequence might contain 1, 2 or 3 target pulses whose duration was 180 msec. The

correct number of targets was chosen uniformly, randomly and independently for each

stream on each trial. The example stimulus of figure 1 contains 3 targets on the left

and 1 on the right.

At the end of the stimulus, the fixation cross was replaced by a question-mark in

the centre of the screen. This signalled to the subject that they were free to blink,

swallow, and move. At this moment they received acoustic feedback (a single “ding!”

of a bell) if the system had correctly classified attention-to-the-left vs. attention-to-the-

right using their EEG. The question-mark also signalled that the subject had up to 5

seconds in which to press a key on their numeric keypad, to report how many target

stimuli had been in the attended stream. As soon as they pressed the key (or after 5

seconds had elapsed) the screen displayed, for 2 seconds, the correct number of targets

in each stream: the numeral on the attended side was green if the subject had responded

correctly, red if not. After a 1–2 second pause, the next trial began.

In the final free-choice block, the classification result could not, of course, be judged

as “correct” or “incorrect” until after the experiment, so there was no bell sound. To

ease the increased complexity of the task (making a free choice and writing it down)



Auditory Streaming BCI 8

we also removed the obligation to press a key and the feedback about the number of

targets. Instead, the screen simply reported “interpreted as LEFT” or “interpreted as

RIGHT” according to the classifier’s output.

2.3. Hardware and software

A BrainProducts 136-channel QuickAmp was used, in combination with the BCI2000

software platform [38] to acquire signals at 500 Hz from 67 EEG positions, roughly

evenly distributed throughout the 10/20 system and mounted on an ElectroCap EEG

cap, as well as 3 EOG electrode positions around the left eye: above (EU1), below

(EL1) and lateral to the outer canthus (EO1). Impedances were lowered below 5kΩ

and unused channels were grounded. The cap used a ground electrode at AFz, and the

amplifier applied a builtin common average reference across the 70 biosignal inputs. For

all online and offline analyses, the electrodes were re-referenced in software to remove

this, using the sparse spatial filter option of BCI2000. The result was 66 EEG signals

referenced to linked mastoids ([TP9 + TP10] /2), as well as horizontal and vertical EOG

(EO1 − [EU1 + EL1] /2 and EU1 − EL1 respectively).

Auditory stimuli were delivered using 4 independent channels of a multi-channel

soundcard: left and right channels to the headphones, plus two channels which were fed

via an optical isolator into two auxiliary imputs of the EEG amplifier. These auxiliary

channels served to provide a synchronization signal for the timing of the left and right

stimuli, in the EEG datastream. Visual stimuli were presented on an LCD monitor at

a comfortable distance.

Data were recorded using BCI2000 [38]. Online signal-processing, stimulus

generation and stimulus presentation were implemented in Python using the

“BCPy2000” add-on to BCI2000 [39]. Offline analysis, and training of classifiers between

blocks, was performed using Matlab.

2.4. Analysis

2.4.1. Online (ERPs) Online classification was based entirely on event-related

potentials, using methods and parameters optimized via the experience gained from

analysing the results of Hill et al. [8] offline. First, the re-referenced EEG signals

were band-pass filtered using an order-6 Butterworth filter designed to pass frequencies

between 0.1 and 8 Hz. Second, following the onset of every pulse in either the left or the

right stream, a 600-msec segment or epoch of the filtered EEG signal was cut out and

stored in memory. Within each trial, the first two left-pulse responses and the first two

right-pulse responses were discarded (on the assumption that the subject might require

some time to “lock on” their attention to the correct stream), after which the system

maintained a running average XL of the epochs following left-stream pulses, and an

average XR of the epochs following right-stream pulses. The difference X = XR − XL,

a 68-channel-by-300-sample matrix, was used as a feature set. Every time a new pulse

occurred and X changed, a new classifier output was computed by multiplying the
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elements of X by a set of linear weights. At the end of each trial i, the final X(i) for

that trial was written to disk to provide one training exemplar for future classifiers.

In the first attention block there was no feedback from the classifier, but after each

attention block, a classifier was trained on all the attention data gathered so far, and

the resulting weights loaded into the system. Thus, from the second attention block

onwards, subjects received feedback about how well their signals could be classified.

Spatial whitening of the data has previously been shown to produce a benefit in

linear ERP classification.‡ Therefore, our first step in classification to estimate a 68-by-

68-channel spatial covariance matrix Σs from the training data, and whiten the feature

representation for each trial i using XP

(i) = Σ
−

1

2
s X(i). The XP

(i) were then classified using

an L2-regularized linear classifier (for online purposes we used the logistic-regression

method), with the regularization parameter being found by 10-fold cross-validation

within the training set. The weights found by the classifier in the whitened space

(call them MP) were then transformed back to yield weights M = Σ
−

1

2
s MP that can be

applied directly to the unwhitened data.

2.4.2. Offline (ERPs and SSAEP) Further offline analysis of the ERPs used very

similar methods to those described above, the only differences being that the

preprocessing chain was re-created offline in Matlab, and performance was assessed by

10-fold cross-validation (and since the training procedure itself employed cross-validation

for model selection, this resulted in double-nested cross-validation). To examine the

potential effect of manipulating the length of a trial, the analysis was repeated using

only the first beat of each stream in each trial, only the first two beats, only the first three

beats, and so on until all beats were used (unlike the online classification procedure, no

beats were discarded).

For offline analysis of the SSAEPs, we cut two segments of the re-referenced multi-

channel signal of each trial: a baseline segment measured during visual cue presentation,

and a stimulus segment starting 1 second after stimulus onset. The segment length of

1872 milliseconds (i.e. 936 samples) was chosen since it was close to the classification

interval length of 2 s used by Farquhar et al. [23], while being an exact integer multiple of

both the amplitude-modulation periods. The SSAEPs induced by sinusoidal amplitude

modulation are, themselves, almost pure sinusoids, and stand out very clearly in single

components of the Fourier transform when this condition is fulfilled. Since, furthermore,

the signal is phase-locked to the stimulation, it is appropriate to use linear preprocessing

and classification methods. We follow Farquhar et al. [23] in using a correlation method:

‡ Comparing the fourth and sixth columns of Table 1 of Hill et al. [8], we can compare offline

classification accuracies immediately before and immediately after applying the FastICA algorithm

to the data. The percentage-point improvement from applying FastICA was 4.0 on average, with

standard error 1.0 across 15 subjects. Since FastICA consists of a PCA whitening step followed by a

rotation in the electrode space, and since L2-regularized classifiers are invariant to such rotations, this

performance improvement reflects what can be achieved by spatial whitening alone—a fact which our

experiments in offline data analysis (results not shown here) have confirmed for both the 2005 data and

the current data.
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for each EEG channel and for each of the two AM frequencies in question, we take the

real and imaginary coefficients of the discrete Fourier transform as features (i.e. the

correlation coefficients of the segment with a cosine-wave and with a sine-wave, a linear

basis for fitting a sinusoid at any phase). This ensures that, as far as possible, only

the information from the SSAEPs is being used, to allow their assessment in isolation

from that of the ERPs. Once again we classify the features with a linear L2-regularized

classifier (logistic regression).

3. Results

3.1. Online Performance

Figure 2 shows the BCI classification performance attained and experienced by the

subjects during the experimental session. Since the classifier was retrained after each

block of 20 trials, the horizontal axis serves to indicate both the number of training

trials and, roughly, the time elapsed during the experimental session. We might expect

performance to improve over time as a function of subject learning and of the number of

training trials with which the classifier has to work, although we might also anticipate

some deterioration of performance over time if the subjects become fatigued. The figure

allows us to assess the combined effect of these factors. For many subjects (e.g. subjects

3, 4, 9 and 13) performance appears to reach its peak very quickly, after only 40–60

training trials (i.e. about 10–15 minutes of calibration). For others, such as subject 1

or even the very high-performing subject 6, it may take longer (120 trials, or 30 mins).

Only two subjects (8 and 10) appear to show a net decline after reaching an early

peak—possibly due to fatigue.

Online performance was then averaged across all 9 blocks for each subject. This

performance statistic has a mean of 84.8% and a standard deviation of 7.2% across

all 13 subjects. In Figure 3 these values are plotted as a function of each subject’s

counting accuracy. Overall mean counting accuracy is 82.9% with a standard deviation

of 14.6% across subjects. The relationship between the BCI and behavioural measures

of attention, though non-linear, is clearly quite monotonic, with a Spearman rank

correlation coefficient of 0.79 (n = 13, p = 6 × 10−4). To a large extent, inter-

subject variation in BCI performance can therefore be explained by variation in counting

performance (see discussion in section 5, below).

3.2. Offline Re-analysis (ERPs)

Figure 4 shows hypothetical performance, as estimated by offline cross-validation, as a

function of the length of the trial. Disregarding the ceiling effect for the best subjects,

% accuracy increases steadily as more stimuli are averaged (upper panel). Accuracy

may be traded off for time taken to measure a single trial: this tradeoff is seen in the

lower panel, where the same results are expressed as an information transfer rate (ITR),

computed in bits per symbol according to the definition presented in Wolpaw et al.
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Figure 2. BCI performance expressed as the percentage of trials classified correctly

online. Each point denotes one block of 20 trials. After each block, the classifier was re-

trained on all the data gathered so far, so the “number of trials” axis is also effectively

a time axis. The different symbol shapes/colours correspond to different subjects.

Filled symbols denote blocks of cued trials with trial-by-trial feedback, whereas open

symbols denote a final “free-choice” block in which subjects wrote down their decisions

on paper as they went along. The horizontal tramlines indicate chance classification

performance (50%) ±1 standard error for assessing the significance of a single 20-trial

block. For assessing the significance of one subject’s results over all 9 data points (180

trials), the tramlines would indicate ±3 standard errors.

[40], then divided by the number of seconds of EEG used per symbol. (Note: we avoid

expressing this in bits/min to draw attention to the fact that it is not directly comparable

to the ITR frequently reported in bits/min in BCI studies. The latter statistic usually

takes into account the “overhead” of the inter-trial gaps, which are not meaningful in

the context of this analysis.)

In this view, there seems to be relatively little value added by playing more than

5 pulses on each side, or thereby acquiring more than about 3 seconds of EEG data

per trial. (Naturally, this is an upper bound on the amount of useful information that
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Figure 3. Online BCI classification accuracy for each subject (averaged across all the

blocks of figure 2) is plotted against the subjects’ accuracy in reporting the number

of target stimuli. Numerals next to the symbols denote (chronological) subject ID

numbers. Each subject also has a characteristic symbol shape/colour matching those

in figures 2, 4 and 7. Our behavioural measure of attentional performance explains

a great deal of the between-subject variation in BCI performance (Spearman’s rank

correlation: r = 0.79, n = 13, p = 6 × 10−4).

can be transmitted, and may be unrealistic: depending on the level of error-correction

that can be built in while retaining usability, any real instantiation of a full BCI+HCI

system might achieve less than this maximum, and may benefit from trading off more

time for accuracy than this apparent optimum would suggest.)

To gain some insight into where and when the useful discriminative information

arises in the EEG features, signed coefficients-of-determination (SCD) were computed

to measure the extent to which each individual feature separates the two different types
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Figure 4. Hypothetical BCI performance estimated by offline cross-validation. In

the upper panel, results are expressed as the percentage of trials classified correctly in

10-fold cross-validation, each point being based on the full data set for one subject

(200 trials for most; 160 for subject AS). In the lower panel, the same results

are re-represented as information transfer rates in bits per second. The different

symbol shapes/colours correspond to different subjects. The analysis was performed

repeatedly using only the first n beats from each stream in each trial, with n varying

from 1 to 7 along the abscissa.

of trial (attend-left or attend-right). SCD is also known as “signed r2”, where r is the

correlation coefficient, computed across trials, between the feature value in question

and the label value (label −1 denoting attend-left or +1 denoting attend-right). r2

can be interpreted as the proportion of variance in label values that the feature in

question, considered alone, can account for; and multiplying it by the sign of the original

r preserves the direction of the correlation. Figure 5 shows the results. Note that attend-

right trials are assigned the larger label value (+1) and the features were computed as

XR −XL (response to right-stream stimuli minus response to left-stream stimuli). This

means that, making the simplifying assumption of equal variances of XR and XL, we

can show that we would obtain identical SCD values for a single subject, up to a scaling

factor of 1/
√

2, if we were instead to take each XR and XL as a separate data exemplar,
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and redefine the labels such that we were contrasting responses to attended (+1) vs.

unattended (−1) stimuli. If we do this (results not shown) we do in fact obtain results

which are qualitatively almost identical to those of figure 5: the figure may therefore also

be understood, perhaps more intuitively, as indicating the contrast between attended

and unattended stimuli. This also means that comparisons between the upper-left panel

(where SCDs are shown) and the lower-left (averaged EEG for attended and unattended

stimuli) are meaningful.

The figure shows four temporal and two spatial views of the discriminative

information, from SCD values that have been averaged across all subjects. One must be

cautious in interpreting the patterns, because of overlap effects: every stimulus-locked

average is polluted by responses to previous and subsequent stimuli from the opposite

stream (however, because of the phase drift between attended and unattended sides, the

pollution is not time-locked to t = 0 in the average and is therefore somewhat attenuated

relative to responses to the stimuli whose onset is at t = 0). There is a negative peak

which appears at Cz/Fz at around 100 msec after stimulus presentation (this actually

tended to be lateralized to the left, and tended to originate a little earlier and more

lateralized, as reflected by the C5 trace). There is also a positive component originating

fronto-centrally around 200 msec and evolving into an (also slightly left-lateralized)

250–400 msec peak.

3.3. Offline Analysis (SSAEPs)

Figure 6 shows the SSAEP signals from one example subject (subject 3, the best

performer in ERP-based BCI). The spectra are computed at Cz, referenced to linked

mastoids. With a window length carefully chosen to contain an integer number of

cycles of both amplitude-modulation signals, the two SSAEPs components stand out

very sharply in the power spectrum as estimated by an FFT on a rectangular-windowed

segment. For the purposes of this illustration the log power was computed at the two

precise SSAEP frequencies across the whole mastoid-referenced scalp montage. Then,

SCD scores (see section 3.2) were computed for these features, to show the degree to

which each feature can be used to separate baseline from stimulus segments (2nd and

4th row of scalp plots) or attend-left vs. attend-right segments (1st and 3rd row of scalp

plots). The scalp distribution of the SSAEPs is somewhat lateralized, centred roughly

on C3 and C4, contralateral to the ear to which the corresponding stimulus component

was presented. There was no such pattern of features, and very poor overall separation,

when attempting to separate attend-left vs. attend-right conditions (top row).

Figure 7 presents a summary of the results for all the subjects, showing that the

pattern illustrated with subject 3 is consistently repeated. The FFT coefficients at the

precise amplitude-modulation frequencies could be used to classify baseline vs. stimulus

segments at about 89.5% correct (±4.9% across subjects) in offline cross-validation

(group C in the figure). They could also be used to classify listen-right trials from

listen-left trials in the perception-only condition, where the unattended stream was
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Figure 5. Signed coefficients of determination (SCDs, also referred to as signed r2

values), averaged across all 13 subjects. These contrast values illustrate how each

feature is correlated with the distinction between attend-right (positive class) and

attend-left (negative class) trials. The SCD values were computed from a space

consisting of 68 channels × 300 time-samples: each feature value denotes the response

averaged for all right-stream stimuli in a given trial (targets and non-targets) minus

the response averaged for all left-stream stimuli (targets and non-targes) in the same

trial. The upper left panel shows the time-course of the SCD values at 4 different EEG

channels, from time t = 0 (the moment of stimulus presentation) to t = +600 msec.

The scalp maps show the spatial distributions of SCD values across the EEG montage,

at the two instants t = +100 msec and t = +300 msec. The horizontal and vertical

EOG channels are marked H and V, respectively. The lower left panel shows the EEG

signal at Cz bandpass-filtered between 0.1 Hz and 45 Hz, time-locked to attended and

unattended stimuli (averaged across all stimuli, both streams, and all subjects).
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Figure 6. Steady-state auditory evoked potentials (SSAEPs) for one example

subject—the best-performing subject in the ERP-based BCI. The upper half of

the figure shows the attention condition (200 trials), and the lower half shows the

perception condition (40 trials). In the leftmost plots, averaged power spectra at

Cz are shown for the silent baseline (grey dots), attend-left (blue x) and attend-

right (red +) time intervals. The scalp maps all show the signed coefficient of

determination (SCD, also known as signed r2) for individual spectral power features in

separating left trials from right trials, or baseline periods from stimulus periods. For

the purposes of illustration, power values are computed without spatial filtering, from

signals referenced to the mastoids.

silent, at 88.8%±8.6 (group B; the increased variability can be attributed to the smaller

number of trials collected in this condition). However, the same feature extraction and

classification procedures could not be used to solve the BCI problem of discriminating

the attended side when both streams were audible (50.2% ± 4.2, group D), despite the

proven ability of the subjects to modulate their ERPs by shifting their attention to the

same stimuli (84.8% ± 7.2, group E).
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Figure 7. Classification results. Groups A through D show classification using SSAEP

features only (FFT coefficients at the precisely-known SSAEP frequencies). A and B

show results from the “perception” condition where the unattended stimulus stream

was silent, whereas C and D reflect the normal attention condition. A and C show

performance in distinguishing stimulus-presentation periods from baseline (silence)

periods, whereas A and D show performance in identifying which of the two stimulus

streams, left or right, was attended. Each subject is shown individually with his or

her unique symbol shape and colour, and within each group the subjects are ordered

from left to right in decreasing order of the online (ERP-based) BCI performance

they achieved using the very same stimuli. For comparison, these ERP-based BCI

performance values are shown in group E.

3.4. Subjective user reports

The following subjective phenomena were each reported, unprompted, by three or more

of the subjects:

(i) Subjects reported that the counting task seemed helpful as a tool for focusing

attention at the beginning of the session, but that gradually (as the trial-by-trial

feedback became more accurate and the subject grew more accustomed to it) it

became redundant. The latter observation is partially supported by the results

of the final free-choice block in which counting was made optional: some subjects

reported that they had not bothered to count, yet overall BCI accuracy was not

significantly lower than in previous blocks.

(ii) Subjects made statements like “I knew I had done well/not so well on many of

the trials, even before the bell” suggesting that after a few blocks of trial-by-trial

BCI feedback, there was strong sense of being able to evaluate one’s own attention-

shifting performance to a degree that seemed correlated with the BCI’s evaluation.

More-rigorous support for these unlooked-for subjective observations may be a

valuable aspect of future studies.
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4. Discussion

The results demonstrate that attentional shifts to dichotically presented auditory

streams are a feasible basis for an effective online binary-choice BCI, in which high

single-trial accuracy can be achieved within a few seconds per trial.

The ERP-based BCI appears to rely on early (N1) as well as later (P3) components.

The usefulness of the N1 component is consistent with the observation of attention-

modulation of the N1 component by Hillyard et al. [16], and is an encouraging sign that

BCIs might be constructed using every stimulus in a periodic sequence, rather than

necessarily having to rely on, (and wait for) a smaller number of less-frequent “oddball”

stimuli, on which purely-P3-driven stimulus designs are traditionally assumed to rely.

4.1. Performance comparison with other auditory-ERP studies

Our subjects’ average online accuracy of 84.8% is very slightly higher than the 82.4%

that was predicted by the best analysis method in our previous offline study [8].

Unfortunately we cannot compare against the results of Kanoh et al. [12], since the

latter authors only reported offline accuracies in which “all the measured responses were

used as both sample and test data” (ibid. p38). We interpret this to mean performance

was measured on the classifier’s own training set and was therefore a drastically inflated

performance measure.

Our results can be compared with those of Halder et al. [13] if we convert to

information transfer rate (ITR). Computing ITR for each subject separately before

averaging, we obtain a mean of 0.415 bits/trial with a standard deviation of 0.195 across

subjects. Following Halder et al.’s convention of taking into account only the time used

to play the stimulus and discarding inter-trial gaps, we obtain 4.98 bits/min ± 2.3. This

is twice the mean ITR of 2.46 bits/min reported in the best condition in Halder et al.’s

table 3, which in turn exceeds all the other auditory studies reviewed in that table.

Our interpretation of this performance difference highlights an important point about

streaming designs. In a streaming design, subjects may be asked to discriminate between

“targets” and “non-targets”, or they may not. If they do so, as in the current study,

then this has the advantage of providing a concrete strategy and incentive for shifting

attention, and an opportunity for the experimenter to verify the level of attention using

a behavioural response. However, the target-non-target contrast is not a necessary part

of the BCI design, and it is not solely the brain response to the target stimulus that is

important in classification. Rather, as Hilyard’s original paper also reported, attention

modulates the response to every stimulus that the user is monitoring (assessing it, if

required to do so, as target or non-target) relative to the responses to the stimuli in the

stream the user is ignoring. This has the advantage that the system does not need to

wait for an infrequent “oddball” target before updating its interpretation of the user’s

attentional state: a meaningful update to the BCI system’s output could be made,

and assessed to see whether enough information has been gathered to make a decision,

every time a stimulus is presented (roughly twice per second in the current stimulus
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design). Seen in this light, the Halder et al. study had the worst of both worlds: it was

a sequential rather than a streaming design (so the system has to wait for the target)

but had only two classes of target, plus a majority of unused non-targets.

It is possible, however, to take advantage of the non-targets by diversifying them

into multiple classes. To compare our study with multi-class sequential designs, however,

one must be aware that the performance metric is usually different from that used above,

because such systems are usually assessed in the context of a more complex real-world

task. Before pruning their subject group to select only the better subjects, Schreuder

et al. [19] report a mean ITR of 2.84 bit/min across all their 21 subjects. Note that the

metric now includes the time taken outside of stimulus presentation, i.e. the “overhead”

of following cues and choosing a letter in a real, practical task—something for which

neither our minimal two-class experiment, nor that of Halder et al. has any analog.

Our subjects performed an average of 4 trials per minute: one trial every 15 seconds

on average, of which the stimulus was played for 5 seconds. To match the mean ITR

of Schreuder et al. our subjects would have had to perform 6.84 trials per minute (5

seconds’ stimuli out of every 8.8 sec). While this might easily have been possible with

our task (healthy subjects mindlessly repeating left-right choices that are prescribed for

them) it would be a considerable challenge to design a communication interface based

on free binary choices, including all the necessary auditory prompts and feedback, that

could achieve this. For communication, binary BCIs will probably only be the preferred

choice for users who are unable to use a more complicated speller.

4.2. Implications for SSAEP BCIs

Our results also provide evidence that SSAEPs are a much poorer neural basis for

attention-based BCI than auditory ERPs. Furthermore it seems unlikely that the

negative finding in this study (and hence probably also the previous negative finding

of Farquhar et al. [23]) can be attributed to an inadequate attention-task design, since

exactly the same stimuli that elicited the SSAEPs also, simultaneously, elicited ERPs

that were very successfully modulated by attention. Although SSAEP features could

clearly be seen, and could easily be used to detect which of the two stimuli was heard ,

there was absoutely no evidence that they could be used to detect attention: SSAEP

classifier performance did not tend to predict even the rank-order of the subjects’

attention-modulation ability, as measured either behaviourally by the counting task

or electrophysiologically by their ERP-based BCI performance.

From the current results, one might even conclude that absolutely no attention-

modulation of SSAEP is detectable on a practicable single-trial basis. Recent results,

however, taken together with the literature reviewed in the introduction, suggest that

this cannot be entirely true: Kim et al. [37] played 20-second-long trials consisting of

two-stream amplitude-modulated stereo sound, used FFT features from EEG measured

from only 4 electrodes, and showed that one pilot subject may have been able to use

attention-modulation for online BCI selection, obtaining 10 correct trials out of 14. Note
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that this is only tentative positive evidence: this online performance of 71.4% is only

1.6 standard-errors above chance (under the null hypothesis of probability correct=0.5,

standard error would be
√

(0.5 × 0.5)/14 = 0.1336). Offline results from the same study

are also moderately encouraging: averaged over 6 subjects each performing 50 trials,

percentage accuracy in cross-validated offline tests ranged from the low 70’s to the mid

80’s depending on the feature representation in use, provided the stimulus length was

10 seconds or more. (Note, however, that since their offline analysis methods did not

appear to use double-nested cross-validation, it is not appropriate to take the averaged-

across-subjects maximum-across-feature-sets performance of 86.3% as a fair indication of

expected generalization performance.) Despite their relative statistical weakness, these

results are suggestive of significant attention-modulation of SSAEP, of the kind that

might be harnessed for BCI, even if the strength of the effect is inferior to the attention-

modulation of ERPs. The minor differences between Kim et al. [37] and the current

study are too many to be able to pin down the reason for this difference in findings

exactly: the different numbers of electrodes, the use of speakers in free field instead of

dichotic listening through headphones, the constant rather than pulsed envelope of the

stimuli and (the most likely influential factor) the much longer stimulus durations, may

all play a role which bears closer investigation.

5. Outlook

As in most BCI systems, accuracy varies widely from subject to subject—however, we

have evidence that this variation can in large part be explained by the subject’s ability

(or perhaps motivation) to focus attention on the stimuli, as indicated by our behavioural

measure of counting performance. This is somewhat unusual in the BCI literature:

although most BCI studies report large inter-subject variation, it is rare for the design

to include an independent behavioural test of attention. The finding raises the hope that

BCI performance for many poorer-performing subjects could be improved considerably

by training, since clearly there is still a behavioural learning-curve that the poorer

BCI performers can attempt to climb. Furthermore, the design of the system allows

for a quantitative measure of auditory attention to be computed online and updated

almost in real time—roughly 3–4 times per second in the current design, although this

output signal would need to be smoothed. Such a signal could be fed back to the

subject, perhaps as a visual or tactile stimulus: this would potentially breathe life into

neurofeedback methodologies for improving attention, now based on direct , immediate

correlates of performance in an attention-driven task, i.e. the attention-modulation of

brain responses to specific stimuli, in contrast to more traditional approaches that

train the amplitude of oscillatory components known to be correlated indirectly with

attention-task performance [see for example 41, 42]. The effectiveness of this kind of

neurofeedback (as compared to ordinary behavioural training on the same counting task)

remains to be tested. Favourable results in such a comparison might establish auditory-

streaming BCI as a valuable tool outside the sphere of BCI-for-communication. One
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example of its application might be as a treatment for people who have specific difficulty

with dichotic listening and auditory attention tasks, as in some cases of central auditory

processing disorder (CAPD) [43]. Another might be as a training tool—for example

for people in occupations such as simultaneous interpreting [44], that require dichotic

listening skills or other forms of selective attention in “cocktail-party”-style acoustic

environments.

Future extensions of the current paradigm might investigate:

• whether stimuli can be speeded up without sacrificing performance, to yield a larger

information transfer rate;

• whether the stimuli are suitable for an older population, more matched to the

demographics of the target population of people in the totally-locked-in state;

• whether other, more-pleasant or more-intuitive stimuli (e.g. voices repeating task-

relevant pairs of words such as “yes” and “no”) might be used without sacrificing

performance;

• to what extent usability and performance are served by an adaptive stopping

mechanism, whereby stimuli continue indefinitely until the classifier has enough

confidence in its output on each trial (this is related to the question of how well

the no-intentional-control brain state can be distinguished from the brain states

corresponding to left-selection and right-selection).

Further development of the system will also require integration of the BCI-based

left-right selection into a comprehensive human-computer interface based on binary

decision trees, through which a user might spell, or control other systems such as

domotic control interfaces that are useful for the target population. Integration of

the BCI described here into such a wider system would provide a valuable expansion

of communication and control possibilities for people who are paralysed and (hence, or

otherwise) have limited vision.
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