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Abstract—This paper investigates the spatial and temporal
dynamics in multi-channel electrocorticographic (ECoG) time
series signals using Coupled Hidden Markov Model (CHMM).
The signals are recorded in a hand motion control task, when
the subject uses a joystick to move a cursor appearing on the
screen to hit a virtual target. We detect signal onset using two
heuristic schemes based on the experiment process. We apply
CHMM to capture the spatial and temporal dynamics between
two different channels within fixed length of duration, where each
channel is modelled by HMM. The interdependence between two
channels are modelled by transitions between hidden states of
different individual HMM. There are eight possible directions
that the target may appear. We learn eight sets of parameters
using EM algorithm to characterize the signal patterns for
each possible direction of movement. Given the test signals, the
set of learned parameters which produces highest probability
likelihood decides the class label. The effectiveness of the model
is measured by classification accuracy. The results indicate that
CHMM outperforms conventional HMM in most of the cases and
is significantly better than first order autoregressive model.

I. INTRODUCTION

Brain computer interface (BCI) is a communication tech-
nique that enables people to interact with the outside world
using brain signals without performing body movement. With
better prediction of people’s intention of movement, BCI can
not only help improve the motor capability of people with
handicap but also enhance the performance of normal people.
The analysis of brain signals is crucial for BCI technique.
There are different sensor modalities of signal recordings
used in BCI. (Figure 1). The most commonly used one is
electroencephalography (EEG), which is recorded from the
scalp. Since it is non-invasive, EEG is flexible and easy to
obtain. However, it suffers from problem like low signal noise
ratio. During the past several decades, an invasive modality
electrocorticographic (ECoG) is gaining scientific interest in
many animal studies. Due to the surgery requirement and
health condition risk, up to date, the majority of human ECoG
recordings are obtained from epilepsy patients who accepted
craniotomy. For solely clinical purpose, electrodes are placed
on the brain surface subdurally or epidurally in order to
monitor and localize seizure foci. The implantation will be
removed in periods of several days to 1-2 weeks. Despite
the surgery risk, the major advantage of ECoG is the fine
resolution in both space and time with substantially high signal
noise ratio compared to EEG (Schalk and Leuthardt [1]).
One important task is to differentiate ECoG signals under

different physical conditions or in response to different exterior
stimulus. This can be treated as a time series classification
problem. There are a variety of classifiers that can be applied
to BCI signals. Lotte et al. [2] provided a comprehensive
survey on existed approaches to classify EEG signals. Similar
categorization can be applied to ECoG signals classification.
Due to limited availability of data, not all the classification
techniques are applied to ECoG signals. Depending on whether
the temporal relation is considered during the classification,
we have static classifier, e.g., support vector machines (SVM),
and dynamic classifier, e.g., hidden Markov model (HMM).
We choose dynamic classifier in order to model the temporal
interactions among different channels of signals.
HMM has been studied intensively since 1970s and widely
used in time series modelling and analysis especially in speech
recognition and synthesis (Rabiner [3]). HMM characterizes
the system evolution by introducing hidden state variable,
which governs the transition of the system among different
status. The observed quantity is considered as random sample
drawn from certain pre-determined probabilistic distribution.
Obermaier et al. [4] applied HMM to classify EEG signal on
a motor imagery task. Zhong and Ghosh [5] compared several
variants of coupled HMM for EEG data classification. Suk and
Lee [6] constructed a two-layer HMM to differentiate EEG sig-
nals. However, the classification was limited to motor imagery
task. Recently, ECoG signals are used for more sophisticated
motor task classification such as finger and hand movement.
Onaran et al. [7] employed a hybrid approach combining SVM
and HMM to classify the movement of individual finger. Wang
et al. [8] took a two step approach to decode the onset and
moving direction, where the onset prediction is completed

Fig. 2.
Drawing depicting the signals for BCI and their locations relative to the brain. Three general
categories of signals are used for BCI applications.
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Fig. 1. Different sensor modalities used in BCI signal recording (Schalk and
Leuthardt [1] with permission to use by author).



by SVM and multi-channel ECoG signals are modelled by
STVDBN. But the model is complicated and requires an
accurate onset detection. In this paper, we propose a model
that keeps a balance between complexity and effectiveness.
We focus on the classification of hand movement direction and
heuristically detect onset by taking advantage of the controlled
experiment process.
The main contribution of our work is applying the coupled
HMM to the new application condition of ECoG signal clas-
sification on sophisticated hand movement. Experiment results
suggest the superiority of proposed model to conventional
HMM. The rest of paper is organized as follows. In section
2, we introduce the dynamic models and methods. Then we
describe the experiment process and discuss the results in
section 3. The last section summarizes the work and points
out future direction.

II. MODELS AND METHODS

A. Hidden Markov Model

HMM is a probabilistic graphical model that describes
stochastic evolution of a set of random variables over time.
Figure 2 is an illustration of the graph structure. The shaded
nodes represent observed quantity, which can be multivariate
random variables. Each observed node has one and only one
parent node, which is hidden, from the same time frame.
We use Xt to represent discrete latent variables and Y t for
continuous observed variables for the rest of paper. Intuitively,

Fig. 2. Graphical topology of standard HMM. Shaded nodes are observed
and unshaded nodes are hidden.

the dynamics of observed quantity are characterized by the
transition among the virtual states across time. There are two
basic assumptions for HMM. First, the transition among hidden
nodes forms a first order Markov process. Second, all the
conditional probability distribution (CPD) are time-invariant.
Based on the assumptions, the joint probability distribution of
length T data Y = {Y 1, ..., Y T } and a set of realization of
hidden nodes X = {X1, ..., XT } can be written as

P (X,Y) = P (X1)

T∏
t=2

P (Xt|Xt−1)

T∏
t=1

P (Y t|Xt) (1)

To fully determine the joint distribution (1), we only need to
define P (X1), P (Xt|Xt−1) and P (Y t|Xt). In this paper, we
parametrize the three CPDs as follows.
1) Initial distribution: π = {πi}.

P (X1 = i) = πi, 1 ≤ i ≤ N (2)

where N is the number of hidden states. To make a valid
probability distribution, we constrain

∑N
i=1 πi = 1, πi ≥ 0

2) Transition probability distribution: A = {aji}

P (Xt+1 = j|Xt = i) = aji , 1 ≤ i, j ≤ N (3)

Similarly, to make a valid probability distribution, we constrain∑N
j=1 a

j
i = 1,∀i, aji ≥ 0.

3) Emission probability distribution: B = {µi,Λi}

P (Y t|Xt = i) = N (µi,Λi), 1 ≤ i ≤ N (4)

where µi and Λi are the mean and covariance matrix of
Gaussian distribution.

B. Coupled Hidden Markov Model

CHMM is an extension to conventional HMM. It has
been applied to speech recognition (Nefian et al. [9]) and
activity recognition (Brand et al. [10]), where different in-
formation sources or processes interact with each other. In
our application, we are interested in modelling the interaction
between multiple channels of signals. We aggregate multiple
HMMs together by allowing transition between hidden nodes
from each HMM. Figure 3 is the graph structure of CHMM
with two channels. CHMM is more expressive than HMM

Fig. 3. Graphical topology of two-channel CHMM. Shaded nodes are
observed and unshaded nodes are hidden.

because it allows different number of states to be applied for
each individual HMM. The parametrization of CHMM is a
natural extension from HMM. Let Yc = {Y 1

c , ..., Y
T
c }, Xc =

{X1
c , ..., X

T
c }, c = 1, ..., C be the cth HMM with C channels

in total. The way we defining the CPDs is similar to HMM.
1) Initial distribution:

P (X1
c = nc) = πnc , 1 ≤ nc ≤ Nc (5)

where Nc is the number of hidden states of cth HMM and∑Nc

nc=1 πnc = 1, πnc ≥ 0.
2) Transition distribution: each hidden node will have C parent
nodes from previous time frame. We define

P (Xt+1
k = nk|Xt

1 = n1, ..., X
t
C = nC) = ank

n1...nC
≥ 0 (6)

where
∑Nk

nk=1 a
nk
n1...nC

= 1.
3) Emission distribution: we use unimodal Gaussian distribu-
tion, which is the same as HMM.

P (Y t
c |Xt

c = nc) = N (µnc ,Λnc) (7)

where 1 ≤ nc ≤ Nc, µnc
and Λnc

are the mean and covariance
matrix.



Stage 1 Stage 2 Stage 3 Stage 4 

Fig. 4. Timeline of single experiment trial. The big square box is a visualization of the screen. Stage 1 is inter-trial period when nothing is shown on the
screen. It lasts 1 second. Stage 2 is pre-trial pause period when there is a box appearing on the screen. The subject is supposed to pay attention but not move
joystick yet. Stage 3 is trial period when a cursor appears on the screen and the subject can move joystick immediately. The maximum duration of trial period
is 2 seconds. Stage 4 is reward period. The box will be highlighted when target is hit correctly.

C. Autoregressive Model

For comparison purpose, we also implement the autoregres-
sive (AR) model, which is widely used for time series analysis.
AR model assumes that the random process is stationary and
current observation can be expressed as linear weighted sum of
previous observations. In our experiment, we use first order AR
model to characterize the signals. To be specific, let Y t ∈ Rd

for all discrete time step t, then

Y t+1 = AY t + ε, ε ∼ N (0, I) (8)

where A ∈ Rd×d is the regression matrix and ε is Gaussian
white noise with identity covariance matrix I .

D. Learning and Inference

The goal of learning in HMM and CHMM is the parameters
associated with the model. The algorithms we used are based
on expectation maximization (EM). For HMM, the E-step
computes the expectation of sufficient statistics of parame-
ters conditioned on observation. Then M-step computes the
maximum likelihood estimate of parameters using the condi-
tional expectation obtained in E-step. The algorithm iteratively
updates parameters with guarantee of increasing likelihood at
each iteration. The same algorithm can be extended to CHMM
by modifying the condition expectation computed in E-step.
The computation of E-step requires the posterior distribution
of a hidden state Xt given the observation of Y. The inference
is completed efficiently using forward-backward algorithm
(Rabiner [3]), which takes the advantage of the chain structure.
The computation complexity is linear to the length of sequence.
To be specific, we define

αt(i) , P (Y 1, ..., Y t−1, Xt = i)P (Y t|Xt = i)

βt(i) , P (Y t+1, ...Y T |Xt = i)

Given the model structure shown in Figure 2. We have the
following recursion.

αt(i) = P (Y t|Xt = i)
∑
j

P (Xt = i|Xt−1 = j)αt−1(j)

(9)

βt−1(i) =
∑
j

P (Y t|Xt = j)P (Xt = j|Xt−1 = i)βt(j)

(10)

with initialization α1(i) = P (Y 1|X1 = i)P (X1 =
i), βT (i) = 1, ∀i ∈ I, where T is maximum time step and

I is some discrete index set. Therefore we can compute α, β
in two rounds of recursion and then use them to compute the
posterior distribution required in E-step.
For classification purpose, we need to compute likelihood
of observation, which is given by P (Y) =

∑
XT α(XT ).

Therefore during testing, given the learned parameters, we only
need to run the forward recursion (9) once for each testing
sequence.
For AR, the learning and inference is integrated as one task
which is estimating regression matrix A. We compute A by
minimizing the mean square error between actual value and
regression value of data.

Âi∗ = arg min
Ai∗

T∑
t=2

M∑
m=1

(ym,t
i −Ai∗Y

m,t−1)2 + λ||Ai∗||2

(11)

where Ai∗ is the ith row of A, M is the number of training
sequences from one class, ym,t

i is the ith dimension of mth

sequence at time step t. In general, each sequence does not
have to be the same length, i.e. T can be different for each
sequence. λ is regularization coefficient which can be selected
by validation during training.

III. EXPERIMENT AND RESULT

A. Data collection and preprocessing

1) Subjects: Four subjects participated in this study. They
were patients with electrodes placed subdurally on the surface
of brain for solely clinical purpose of identifying epilepsy
seizure foci prior to surgical resection. All the subjects had nor-
mal cognitive capability and were functionally independently.
They all gave informed consent. The study was approved by
the Institutional Review Board of Albany Medical College as
well as by the Human Research Protections Office of the US
Army Medical Research and Materiel Command.
There were two male subjects and two female subjects. The
number of electrodes placed on each subject varies from 96 to
112. During the motion control experiment, the subject held

TABLE I. SUBJECTS PROFILE AND NUMBER OF SEGMENTED
SEQUENCES USED IN TRAINING AND TESTING

Subject Gender Age Training Sequences Testing Sequences
A Female 29 206 203
B Male 25 93 91
C Male 25 186 180
D Female 49 95 89
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Fig. 5. General process of the experiment. Ellipse blocks are data items and square blocks are processing units.

a joystick to move a cursor appearing on the screen to hit
virtual target. For each trial, the subject went through different
stages from rest to moving according to the timeline specified
by BCI2000 CursorTask protocol (Schalk and Mellinger [11]).
Figure 4 illustrates the timeline of one trial.

2) Signal processing: The ECoG signal is sampled at
1200Hz for each channel. We first exclude channels with
significant line noise and then apply common average filter
to all channels. We then apply notch filter to further reduce
harmonics of line noise. For feature extraction, we apply
spectrum filter followed by Hilbert transform to extract am-
plitude of representative frequency band. In our experiment,
we use high gamma band of range 70-170 Hz, which has
been demonstrated with significant correlation to motor activity
(Schalk [12]). Finally, we downsample the signal to 200 Hz.

B. Channel selection and segmentation

Among all the electrodes, only a few of them covered
the motor cortex area. Although we can blindly feed all the
channels of signal into proposed dynamic models, the channels
that recorded signal with irrelevant neural activities will be of
little use. In our experiment, we select channels from the ones
that are covering or close to the motor cortex area. For each
channel we compare the average amplitude change between
motion period and rest period. Finally, we select top two
channels with the largest average amplitude change over all
trials. Figure 6 provides two segments of feature points in
selected channel for the same subject.
After choosing channels, we segment a fixed length sequence
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Fig. 6. Feature segment from two selected channels of subject A.

of 1 second duration, which is typical duration of joystick
movement in our study. This gives us 200 data points for each
sequence. For each subject, we choose half of the samples for
training and the rest half for testing. Table I lists the number
of training and testing samples we used in the experiment for
each subject. Since the subject performed multiple trials in a
consecutive manner, we need to determine which part of the
signals correspond to the actual neural activity of motion con-
trol. The detection of exact signal onset is still open research
problem. In our experiment, we heuristically determine the
onset location by taking advantage of the experiment protocol.
Considering the variation of response time for each subject in
each single trial, we compare two schemes of onset selection.
First, we decide onset as soon as the virtual target appears
on the screen namely the beginning of stage 3 in Figure 4.
Second, we decide onset as soon as the joystick position has
been changed, which is recorded together with ECoG signals.

C. Model training and classification

There are eight classes corresponding to eight possible
directions of movement to hit the targets. For HMM and
CHMM, we learn one set of parameters for each class during
training, yielding eight models. During testing, for the same
test sample, we compute the likelihood using each of the eight
sets of parameters. Then the class label is determined the by
the following criteria.

k̂ = arg max
k

logP (Y|θk) (12)

where k is the class label and θk is the set of parameters
associated with class k. Although we only use high gamma
band amplitude as feature for each channel, the model is
completely general and can be applied to higher dimensional
features. Figure 5 summarizes the overall experiment flow.
Since we compute maximum likelihood estimate of parameters
iteratively using EM algorithm, which only converges to local
optimum. Choosing initial parameters is crucial. We applied K-
means algorithm to pre-cluster data at each time step, where
the K value is chosen to maximize average classification
accuracy in a 5-fold validation process. Given the cluster result,
we initialize all the parameters as follows. 1) Initial distribution
is initialized as the number counts of data points from the
same cluster. 2) Transition distribution is initialized using the
number counts of state transition between neighbouring data
points. 3) Observed node mean and covariance are initialized
using sample mean and sample covariance of data points from
the same cluster respectively. The model implementation uses
BNT toolbox (Murphy et al. [13]).
For AR, we compute eight regression matrices using training
samples. During testing, we compute square error using the



TABLE II. CLASSIFICATION ACCURACY ON TEST SET FOR EACH SUBJECT

Subject A B C D
Onset Stimulus Joystick Stimulus Joystick Stimulus Joystick Stimulus Joystick

CHMM 0.1872 0.2167 0.2308 0.1868 0.2111 0.2278 0.2135 0.2360
HMM 0.1921 0.1872 0.1978 0.1978 0.1778 0.2111 0.1461 0.1685

AR 0.1478 0.1379 0.1099 0.1209 0.1667 0.1500 0.2022 0.2360

eight matrices and choose the one with least value.

k̂ = arg min
k

T∑
t=2

||Y t −AkY
t−1||2 (13)

where Ak is the regression matrix of class k.
The number of hidden states varies from two to six. We
reported result with highest classification accuracy on test set.
The regularization parameter λ is chosen by 5-fold validation
during training between 0-10 with a granularity of 0.1.

D. Results and Discussion

The experiments compare two different temporal alignment
schemes and three models on four different subjects. Consid-
ering the physical difference between individuals, we perform
classification for each subject individually. The classification
accuracy on test set are listed in Table 2. The chance level
for classification is 0.125. Given the same temporal alignment
scheme, CHMM performs better than HMM for subject C
and D. The average relative improvement for subject C and
D are 14% and 43% respectively. For subject A, CHMM is
better than HMM using joystick onset alignment by 16%,
though CHMM is worse than HMM using stimulus onset
alignment by 3%. Subject B has the opposite result to subject
A. CHMM improves classification rate by 17% with stimulus
onset alignment and deteriorate by 6% with joystick onset
alignment. Overall, CHMM outperforms HMM most of the
case. Even if not the case, the deterioration is less significant
than the improvement.
In addition, for all subjects CHMM performs better than AR,
which even produces results below chance level. This indicates
that first order AR model is not sufficient to describe the
temporal transition among multiple channels of ECoG signals.
Comparing two different onset alignment schemes, joystick
onset are in general more discriminative in determining the
direction of movement. One possible explanation is we only
use channels that cover motor cortex area, which mainly affect
subject’s motor activity. According to the experiment timeline,
after the target appears on the screen, there will be one second
planning time before the cursor appears. During this period
of time, the subject’s motor cortex area may or may not be
involved in the response to visual stimulus. On the other hand,
with joystick onset, it is more likely that motor cortex area
becomes active. Therefore, for CHMM and HMM, joystick
onset alignment tends to produce higher classification rate.

IV. CONCLUSION AND FUTURE RESEARCH

In this paper, we employed CHMM on multi-channel
ECoG signals to explicitly capture the temporal interactions
among brain signals during multi-direction hand movement
task. We choose two signal alignment schemes based on the
experiment process. By comparing CHMM with conventional
HMM and AR model, we demonstrate that CHMM is more
expressive in characterizing the temporal dynamics of ECoG

signals. The relative improvement of classification accuracy is
noticeable. In the future, we plan to include more channels and
multiple frequency bands as features and extend experiment
to more subjects. We are also interested in designing models
robust to the temporal variation between different trials.
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