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Abstract

For decades, oscillatory brain activity has been characterized primarily by

measurements of power and phase. While many studies have linked those mea-

surements to cortical excitability, their relationship to each other and to the

physiological underpinnings of excitability is unclear. The recently proposed

Function-through-Biased-Oscillations (FBO) hypothesis [1] addressed these is-

sues by suggesting that the voltage potential at the cortical surface directly

reflects the excitability of cortical populations, that this voltage is rhythmically

driven away from a low resting potential (associated with depolarized cortical
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populations) towards positivity (associated with hyperpolarized cortical popu-

lations). This view explains how oscillatory power and phase together influence

the instantaneous voltage potential that directly regulates cortical excitability.

This implies that the alternative measurement of instantaneous voltage of os-

cillatory activity should better predict cortical excitability compared to either

of the more traditional measurements of power or phase. Using electrocortico-

graphic (ECoG) data from 28 human subjects, the results of our study confirm

this prediction: compared to oscillatory power and phase, the instantaneous

voltage explained 20% and 31% more of the variance in broadband gamma,

respectively, and power and phase together did not produce better predictions

than the instantaneous voltage. These results synthesize the previously sepa-

rate power- and phase-based interpretations and associate oscillatory activity

directly with a physiological interpretation of cortical excitability. This alterna-

tive view has implications for the interpretation of studies of oscillatory activity

and for current theories of cortical information transmission.

Introduction

A central goal of neuroscience is to determine how the relatively static

anatomy of the brain can support dynamic cortical function, i.e., cortical func-

tion that varies according to rapidly changing task demands. Ever since seminal

studies in the 1930s [2], it has become increasingly recognized that low-frequency5

oscillatory activity plays an important role in dynamically modulating the ac-

tivity of the cortex. However, exactly how oscillations may serve this purpose,

and how to best measure their modulatory effect has been debated.

Current understanding of the functional significance of oscillatory activity is

based on a large number of studies that have linked oscillatory activity to corti-10

cal excitability, i.e., the probability of action-potential firing or its macroscopic

correlates, and to resultant variations in behavioral performance. While there

is still debate about the generators of oscillatory activity, substantial evidence

points to interactions between subcortical and cortical structures. For example,
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for oscillations in the alpha band, studies have repeatedly implicated specific15

thalamic nuclei and corresponding cortical areas [3, 4]. At the same time, how

the properties of such oscillations should best be measured using macroscopic

recording techniques (e.g., electrocorticography (ECoG), electroencephalogra-

phy (EEG), or magnetoencephalography (MEG)) is not clear. Macroscopic

measurements are influenced by many factors that include the directional ori-20

entation of cortical neurons to each other and to the recording electrode, or

the location of the referencing electrode with respect to the recording electrode.

Because the precise anatomical and geometric relationships are generally not

available for large populations of neurons, it has not been feasible to estab-

lish generalized biophysical models of oscillatory activity that is measured at a25

specific cortical location1. Thus, while theoretically possible, the limitations of

current technologies make it impractical to use biophysical models to describe

how oscillatory activity manifests in specific macroscopic recordings, and to use

this information to inform signal processing algorithms that extract relevant

aspects of oscillatory activity from those recordings.30

In spite of this limitation, many experimental studies have demonstrated re-

lationships between specific features of oscillatory activity and cortical function.

These studies suggest that the power or phase of oscillatory activity modulates

the level of cortical activity or behavioral performance [6, 7, 8, 9, 10, 11, 12,

13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32]35

and hence plays a central role in the dynamic modulation of cortical function

in response to varying task demands [33, 34, 35]. Specifically, these and other

1Biophysical models can be very powerful tools for interpretation and simulation. At the

same time, they are also subject to important constraints. For example, neural-biophysical

models frequently only describe the activity of very specific and well-defined circuits, and

their validity may not generalize beyond one or a few specific brain states (e.g., models that

describe electrical/neural behavioral during non-rapid eye movement (NREM) sleep, but not

during REM or wakefulness; see [5] for an example). They currently certainly cannot give a

mathematical formulation of an oscillation that we may observe in one specific ECoG recording

location.
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studies have consistently reported that during times when oscillatory power is

low or during times of an oscillatory trough, the probability of action potential

firing rate, broadband gamma augmentation, or higher behavioral performance40

is increased2.

In contrast to low-frequency oscillatory activity, many studies have sug-

gested that the key indicator of cortical population-level activity (i.e., corti-

cal excitation) is ECoG activity in the broadband gamma (70-170 Hz) range

[36, 27, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46]. Broadband gamma has been45

shown to be a direct reflection of the average firing rate of neurons directly un-

derneath the electrode [47, 48, 49, 50], and has been shown to drive the BOLD

signal identified using fMRI [51, 52, 53, 54]. The physiological underpinnings of

broadband gamma are that of a non-oscillatory noise process that is best cap-

tured by measurements of power, variance, or voltage envelope [47, 48, 49, 50].50

Despite the number and consistency of the reports relating oscillatory power

and phase to cortical excitability, it is important to recognize that the specific

choice of each of these two measurements is arbitrary and not informed by bio-

physical or physiological principles. This situation creates two important issues

that have not received much attention. First, the choice of these measurements55

and the methods to extract them are based on assumptions about the character-

istics of oscillatory activity that are imprecise. For example, the measurement of

the power or phase in a signal using the Fast Fourier Transformation (FFT) or

other prevalent techniques is based on the assumption that oscillatory activity

is sinusoidal in shape and varies symmetrically about a mean. However, it is60

well known that oscillatory activity is not sinusoidal [55, 56, 57, 58], and there

have been initial experimental reports [59, 60] that described asymmetric volt-

age distributions in oscillatory activity. The second important issue is that it

is unclear why cortical excitability appears to be related to two mathematically

independent measurements (power and phase) of the same physiological pro-65

2This consistency is interesting since we are well aware that the amplitude and even polarity

of an electrophysiological signal critically depends on the location of the reference electrode.
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cess. In summary, the current lack of a formal model of oscillatory activity and

the issues with current methods to extract measurements from them impedes

the physiological interpretation of experimental findings involving oscillatory

activity, and results in suboptimal measurements of cortical excitability.

The recently formalized Function-through-Biased-Oscillations (FBO) hypoth-70

esis [1] describes an alternative view that addresses both issues. Synthesizing

results from single-neuron neurophysiological studies [61] and other contribu-

tions [62, 58], the first principle of the FBO hypothesis suggests that oscillatory

activity may best be conceptualized as rhythmic inhibition of neuronal popula-

tions in the cortex that may be produced by rhythmically discharging neurons75

in subcortical nuclei. In this view, macroscopic voltage measurements reflect

a low resting voltage at which cortical neurons are depolarized; the rhythmic

arrival of subcortical action potential volleys moves the detected voltage toward

and away from positivity, thereby rhythmically hyperpolarizing/inhibiting the

cortical populations. This rhythmic inhibition creates an asymmetric voltage80

distribution similar to that shown by the yellow trace in the top right panel of

Fig. 1. This working hypothesis does not describe a biophysical but rather a

physiologically inspired model of oscillatory activity. At the same time, it sug-

gests a plausible description for the physiological mechanism underlying rhyth-

mic voltage changes at the cortical surface and provides an approach to optimize85

the extraction of measurements of cortical excitability.

This view is also consistent with the existing experimental findings based on

oscillatory power or phase (see Fig. 1, top panel, green and blue traces on the

left and center, respectively). On average, cortical excitability is high for small

values of oscillatory power (the left part of the green trace, also see green trace90

in center panel), and for the trough of oscillatory phase (±π, see blue trace in

center panel). It is also apparent that the predictions based on oscillatory power

and phase can sometimes contradict each other. For example, low oscillatory

power should predict a relatively constant high level of cortical excitability, but

the peak/trough phases within the same periods should predict variable levels95

of excitability. Also see Fig. 4 in [1].

5



If this central proposal of the FBO hypothesis is correct, the variations in

instantaneous voltage amplitude of biased oscillations (as shown in the yellow

trace in the top panel in Fig. 1) should most directly relate to variations in

cortical excitability. This view provides an alternative to power/phase-based100

conceptualization of oscillations that is simpler (one measurement instead of

two) and more physiologically plausible (as it can readily be conceptualized by

voltage deviations caused by subcortical action potential volleys). More impor-

tantly in the context of the present study, it also creates two important and

testable predictions: 1) the instantaneous voltage of biased oscillations is a bet-105

ter predictor of cortical excitability than either oscillatory power or phase; and

2) oscillatory power and phase together should not predict excitability better

than the instantaneous voltage. The study described in this paper confirms

these predictions.

Materials and Methods110

Subjects and Data Collection

We recorded ECoG signals from 28 human epilepsy patients who each had

58–134 ECoG electrodes (2,442 total) implanted for the purpose of presurgical

planning. Recording was accomplished at the bedside using the general-purpose

BCI2000 software [63, 64], which interfaced with eight 16-channel g.USBamp115

biosignal acquisition devices or a single 256-channel g.HIamp biosignal acquisi-

tion device (g.tec, Graz, Austria). A splitter box routed signals simultaneously

to the clinical monitoring system and to the BCI2000/amplifier system, and

thereby supported continuous clinical monitoring. The signals were amplified,

digitized at 1200 Hz, and stored by BCI2000. Electrode contacts distant from120

epileptic foci and areas of interest were used for reference and ground.

Behavioral Task

Each subject performed in three conditions: 1) alternating sequences of

repetitive movements of the hand (manipulating a Rubik’s cube) or orofacial
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Figure 1: Comparison of the three measurements of oscillatory power, phase, and instanta-

neous amplitude, their relationship to cortical excitation, and exemplary experimental data

from one location. Top row: Left and center panels show exemplary waveforms of band-pass

filtered oscillatory activity with zero mean as implied by traditional measurements of oscilla-

tory power and phase, respectively. Right panel shows exemplary waveforms of asymmetric

oscillatory activity as proposed by the FBO hypothesis. Y axes give signal amplitude; X axes

give time. Color gradients indicate each measurement’s theoretical relationship to cortical

excitability: darker colors correspond to high excitability, and light colors correspond to low

excitability. E.g., the left part of the green trace has low oscillatory power and is associated

with high cortical excitability as indicated by the dark green color. Middle Row: Each mea-

surement’s relationship with cortical excitation (y-axis). Color gradients correspond to those

in the top row. Left panel: cortical excitability (dark green color) and resulting excitation

(value on y-axis) are high when oscillatory power is low. Center panel: cortical excitation

and excitability are high when the oscillation is at its trough (i.e., ±π). Right panel: cortical

excitation and excitability are high when the instantaneous voltage is low. Bottom Row:

Exemplary experimental data from one ECoG location. Each dot gives the average normal-

ized broadband power within one of 1000 bins that are spaced linearly across each of the

three X axes. These data, and their parametric fits using sigmoid/cosine functions, conform

to expectations illustrated in the middle row. Y-axes give normalized broadband activity (an

index of cortical excitation and a proxy for cortical excitability). In this exemplary channel,

the fit (assessed as r2) of the model to the data is 0.83 for power, 0.71 for phase, and 0.96 for

instantaneous voltage.
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muscles (protruding and retracting the tongue or lips); 2) passive listening (short125

stories presented with computer speakers); and 3) periods of rest. In each trial,

BCI2000 cued the subject visually to the task by presenting the words “solve

Rubik’s cube,” “stick out tongue,” “kiss,” “listen carefully,” or “stop and relax.”

Each task was performed for 15 seconds (except for passive listening, which was

17-36 seconds depending on which narrative was presented). The motor tasks130

were performed at a self-paced rate of about two repetitions per second. Each

task was followed by a resting period of 15 seconds before the next task pro-

ceeded. One run consisted of 5 repetitions of this sequence over the course

of 10.22 minutes (4.75 minutes rest, 1.25 minutes hand moving, 1.25 minutes

tongue moving, 1.25 minutes lips moving, and 1.72 minutes passive listening).135

We typically recorded one initial run to familiarize the subject with the task.

This initial run was not included in data analyses. To test the main hypotheses

in our study on two spatially and functionally distinct brain networks, we fo-

cused the analyses described here on the data from the hand movement, passive

listening, and resting periods.140

Data Preprocessing

Before proceeding with analyses, we inspected ECoG recordings visually of-

fline, and removed from further analyses those channels that did not contain

clear ECoG signals (e.g., ground/reference channels, channels with broken con-

nections, presence of environmental artifacts, or interictal activity). In addition,145

we excluded channels with excessive line noise. To identify those channels, we

first applied an IIR peak filter (MATLABTM iirpeak function) to calculate the

signal power at 60 Hz (i.e., line noise) at each channel. Then, across all channels,

we calculated the median and the median absolute deviation (MATLABTM mad

function) of those line noise values. Finally, we excluded those channels whose150

60 Hz line noise value was more than 10 median absolution deviations different

from the median line noise. These procedures left 54–132 locations from each

subject (2,384 locations total across all subjects) that were submitted to further

analysis.
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Extraction of Broadband Gamma Activity and Alpha Power/Phase155

Testing the main hypotheses in our study required establishing the rela-

tionship between three different measurements of cortical excitability and a

measurement of cortical excitation. ECoG broadband gamma is widely recog-

nized as a measurement of cortical excitation, because it has been identified as

a key indicator of task-related cortical activity in many different experimental160

paradigms [36, 27, 37, 38, 39, 40, 41, 65, 66, 42, 43, 67, 28, 44, 45, 46]. Moreover,

it has been shown to reflect the average firing rate of neurons directly under-

neath the electrode [68, 48, 49, 50] and has been related to the BOLD signal

detected using fMRI [51, 52, 54].

Ever since the discovery of the cortical excitability cycle more than 80 years165

ago [2], it has been well understood that oscillatory activity is involved in modu-

lating the excitability of neuronal populations in the cortex. The measurements

that have usually been made to quantify the magnitude of this modulatory ef-

fect are oscillatory power (e.g., [15]) and oscillatory phase (e.g., [19]). Thus,

we used those measurements as the two principal traditional indices of cortical170

excitability.

To extract these features of oscillatory and broadband gamma activity, we

first high-pass filtered the ECoG signals at 0.01 Hz and re-referenced them to

a common average reference (CAR, [69]). We obtained the CAR-filtered signal

s′h at channel h using the formula

s′h = sh − 1

H

H∑
q=1

sq

sh was the original signal sample at a particular time, and H was all channels

included in the CAR. We then extracted the amplitude of oscillatory activity
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in the alpha band3 (7–12 Hz) using a 6th order4 Butterworth band-pass filter

implemented with zero phase lag (MATLABTM filtfilt function), and derived175

broadband gamma activity by applying a band-pass filter of 70–170 Hz. We then

obtained the amplitude envelope (i.e., square root of power) and phase estimates

for alpha/gamma activity by applying the Hilbert transform to the respective

band-pass filtered time series5.

Extraction of Instantaneous Oscillatory Amplitude180

We also extracted a novel measurement of oscillatory activity — the instan-

taneous voltage of oscillatory activity — from the ECoG signals. ECoG voltage

measurements are affected not only by oscillatory activity, but also by asyn-

chronous neuronal activity (broadband gamma) or ionic flows (see simulated

exemplary noisy voltage trace in Fig. 2-A). Thus, just like with the traditional185

power and phase measurements derived from oscillatory activity, the instanta-

neous amplitude of oscillations has to be extracted from the raw ECoG signals

to maximally separate it from activity from other sources.

One way to extract the instantaneous amplitude of biased oscillations begins

by band-pass filtering oscillatory activity to filter out non-rhythmic activity.190

This initial step will make the signal zero mean (i.e., it varies symmetrically

about zero irrespective of the peak-to-peak amplitude at a particular point in

3Oscillations at different frequencies subserve different cortical regions. For example, oscil-

lations in the alpha band are prevalent throughout the sensorimotor system (e.g.,, Kubanek

2013, Kubanek 2015) and auditory system (e.g., Potes 2012a, Potes 2014). Because the tasks

we study here affect neuronal populations in those systems, we focused on alpha oscillations

in this study. Please see Discussion for further elaboration.
4To ensure that filter order did not present a confound in our analyses, we re-ran our

processing pipeline after reducing the filter order to 3, and found no appreciable difference in

our results.
5The amplitude envelope of an oscillation is the square root of oscillatory power, and so

these terms are non-linear versions of each other. While we followed typical ECoG analyses

procedures to calculate the envelope of broadband gamma activity (i.e., amplitude), we use

the term “oscillatory power” during conceptual presentations of this manuscript to highlight

the traditional power/phase framework.
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Figure 2: Extraction of the instantaneous voltage. (A) gives the time course of a

simulated rhythmic signal contaminated by non-rhythmic noise. (B) gives the result of band-

pass filtering the signal shown in (A). This procedure removed noise, but also removed the

bias in the data and made the signal zero-mean. (C) shows the result after adding the bias

back into the data. Troughs are at the same amplitude throughout.

time, Fig. 2-B)6. Because the first principle of the FBO hypothesis proposed a

model of oscillatory activity in which the troughs of the oscillation are always at

the same low voltage level irrespective of the peak-to-peak amplitude, the critical195

step necessary to derive the instantaneous oscillatory amplitude is to subtract,

at each point in time, an estimate of the amplitude bias from the band-pass

filtered signal. The resulting signal represents the instantaneous voltage of the

biased oscillation (see Fig. 2-C). Thus, the procedure described here is taking

advantage of the understanding suggested by the model proposed in the FBO200

hypothesis.

To calculate the instantaneous voltage amplitude, we first calculated, at each

location, the minimum amplitude value of the troughs of each alpha oscillation

(i.e., its bias offset, offsetbias) as the 5th percentile of the voltage values in the

band-pass filtered alpha activity time course (see Fig. 2-B). At each point in205

time, we then derived the amplitude bias as the difference between the nega-

tive of the amplitude envelope value, SAE , and the bias offset, offsetbias, and

6It is important to recognize that, depending on the specific filter coefficients, this band-

pass filtering procedure implies a particular shape of rhythmic activity that almost certainly

will not match its true shape. Thus, similar to other common approaches to feature extraction,

this aspect of our procedure is almost certainly suboptimal.
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subtracted it from the band-passed alpha activity value, SAA, to derive a bias-

corrected alpha activity value S′AA. See the following equation for the formal

definition:210

S′AA = SAA − (−SAE − offsetbias)

In summary, this procedure re-introduces the bias that is lost by the band-

pass filtering procedure back into the data, and estimates the bias based on a

model7.

Identification of Task-Related Locations

Evaluating the relationship between specific measurements of cortical ex-215

citability and cortical excitation requires that a particular cortical location

varies in excitability and excitation throughout the dataset. To ensure this,

we selected, in each subject, only those locations for subsequent analyses in

which broadband gamma activity changed between rest and one of the two

tasks (movement of the hand (i.e., motor task) or passive listening (i.e., auditory220

task))8. We first calculated, separately for each task and location, the pairwise

Pearson’s coefficient of determination (r2) between task labels (i.e., task and

rest) and broadband gamma activity. To ensure that broadband gamma varied

markedly across the dataset (so that we could properly evaluate its relationship

with oscillatory activity), we selected from all 2,384 channels only those with r2225

values larger than (the empirical threshold of) 0.2. This yielded 82 task-related

locations for the motor task, and 44 different locations for the auditory task.

Fig. 3 shows all electrode locations (black dots), the locations that are modu-

lated by the auditory task (44 larger green dots) and motor task (82 larger red

7It is possible to estimate the bias from the measured (unfiltered) signal itself, although

there are other sources of low-frequency signal components (e.g., signal drifts due to changes

in amplifier characteristics or the electrode interface) that may make this difficult.
8Since broadband gamma variations are spatially more focused than are modulations in

oscillatory activity (e.g., see [70]), we assume that oscillatory activity at localizations with

task-related broadband gamma changes will vary with the task as well.
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A B

Figure 3: Electrode locations from all 28 subjects. Left (A) and right (B) hemispheres

are shown. Electrodes are projected onto the common MNI template for ease of visualization.

Red/green dots indicate locations whose broadband gamma activity was modulated by the

motor/auditory task, respectively. Small black dots show electrode locations not related to

either of the two tasks.

dots), for the left (A) and right (B) hemispheres.230

Establishing the Relationship between Alpha Power/Phase/Instantaneous Am-

plitude and Broadband Gamma Activity

Our central question was to determine whether an alternative measure of

oscillatory activity, i.e., the instantaneous amplitude, was a better predictor of

cortical excitability (as assessed by its proxy broadband gamma) than power or235

phase. To answer this question, we implemented a procedure that derived, at

each location, a measurement of the degree of the relationship between each of

the three oscillatory measurements and broadband gamma. Specifically, we fit

an appropriate model to the data, determined the fit of the model, and evaluated

which of the three models was the best fit for the data across all locations and240

subjects. The specific procedure that we used to report our primary results is

described in more detail in the following section. In addition, we also describe

a number of control analyses in a dedicated section “Control Analyses.” These

additional results address the possibility that the conclusions drawn in this

paper were supported by only a small subset of our data or were due to our245

specific analytical and statistical approach.

13



Model Fitting and Model Testing

For each location, we established a model that described the relationship

between alpha power, phase, or amplitude with broadband gamma activity.

Based on preliminary testing, we used a sigmoid function to model the relation-250

ship between alpha power/alpha amplitude and broadband gamma9. Based on

previous literature [71, 72], we used a cosine function to model the relationship

between alpha phase and broadband gamma. See bottom row in Fig. 1 for

examples from one electrode location. Similar to Potes et al. [28] and many

other studies, broadband power decreases with larger oscillatory power. Similar255

to Canolty et al. [9] and many other studies, broadband power is also largest

during the through of an oscillation.

We used the MatlabTM function sigm fit from the MathWorks FileEx-

change to establish the sigmoid fits. To ensure that the value range of the x

axes for the power and amplitude measurements was not affected by individual260

outlier samples, we eliminated all samples for which their power/amplitude val-

ues were not within their respective 5th – 95th percentiles. We used all data for

the phase measurement, because phase values are by definition confined to ±π.

We then binned the samples into 100 linearly spaced bins based on oscillatory

power, phase, or instantaneous amplitude, and calculated the mean broadband265

gamma value in each bin10.

The distribution of data points may not be even across the range of values

of oscillatory power/phase/amplitude. Differences in these distributions may

differentially affect the model fits, and thus unfairly favor one model to the other.

To eliminate this potential confound, we identified the bin with the smallest270

number of data points across all three measurements (power/phase/amplitude)

within any given channel. We then used this number to subsample data across

9As described later, the use of a linear model for establishing these relationships confirmed

the principal findings presented here.
10As described later, the use of other binning methods or no binning method did not alter

the principal findings presented here.
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all bins such that each bin represented the same number of data points, and

calculated the three model fits based on these subsampled data populations.

We executed this procedure 1000 times using sample-with-replacement, and275

averaged the results. This procedure resulted in one average measurement of r2

for each location and for each of the three measurements.

Control Analyses

In the main analyses described in the paper, we used sigmoid and cosine

models, and applied them to binned data. In additional control analyses, we

used linear and circular-linear models, or applied them to unbinned data. To do

this, we computed Pearson’s correlation between power or instantaneous voltage

and broadband power, and circular-linear correlation (equivalent to Pearson’s

correlation but with one circular and one linear variable) between phase and

broadband power. The circular-linear correlation between a linear variable x

and a circular variable α is given by

ρcl =

√
r2cx + r2sx − 2rcxrsxrcs

1 − r2cs
,

where rsx is the Pearson’s correlation coefficient between sinα and x, rcx is

the coefficient between cosα and x, and rcs is the coefficient between cosα and280

sinα. These control analyses did not affect our conclusions.

Testing of the First Hypothesis

To test the first and main hypothesis presented in this paper, we deter-

mined whether instantaneous amplitude better predicted cortical excitability

(as indexed by broadband gamma activity) compared to either the power or285

the phase. To do this, we compared the distributions of r2 values (across all of

the 44 auditory and 82 motor locations from all subjects) corresponding to fits

for power/phase/amplitude to each other (Table 1). To establish these compar-

isons, we submitted these distributions to a (non-parametric) paired Wilcoxon’s

Signed Rank test. We also applied the same test to r2 values derived from all290

(i.e., not binned) data. Finally, we applied Wilcoxon Signed Rank tests to r2
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values derived from all data points using non-parametric Spearman or circular-

linear correlations.

Testing of the Second Hypothesis

If oscillatory power and phase are different reflections of the principal mea-295

surement of instantaneous voltage, then oscillatory power and phase together

should not predict excitability better than the instantaneous voltage. To test

this second hypothesis, we applied the same multi-linear regression analysis to

two models. The first model utilized both the amplitude envelope as well as

the phase of oscillatory activity. As in Sarma and Jammalamadaka [73], it ac-300

counted for the circularity of phase information by incorporating a sine and

cosine term and for the sigmoidal relationship between the envelopes of oscilla-

tory activity and broadband gamma by applying a kernel function to transform

oscillatory envelope values according to the sigmoid function that was fit to the

time series data at that location. The general equation for the model took the305

form:

1. Ŷt = β̂0X
′
t + β̂1cos(φt) + β̂2sin(φt) + β̂3

where Ŷt corresponds to the predicted values of broadband gamma enve-

lope, X ′t to the output of the kernel function that transformed oscillatory

envelope values, φt to phase values, and each β̂ term to successive regres-310

sion coefficients and a constant offset term. The kernel function, X ′t, took

the form:

2. X ′t =
a

1 + e(b−xt) ∗ c
where a describes the y range (top - bottom) between the sigmoid’s asymp-

totes, b the average of the top and bottom values, c the function’s slope,315

and xt the original envelope value from that location’s time series at time

t. Taken together, the final equation for the model can be expressed as:

3. Ŷt = β̂0

(
a

1 + e(b−xt) ∗ c

)
+ β̂1cos(φt) + β̂2sin(φt) + β̂3

The second model was set up similarly, but only made use of the instan-

taneous voltage. It, too, used a sigmoid kernel function to transform the in-320
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stantaneous voltage time series from each location according to the function

parameters determined for those locations in the curve-fitting stage of our pro-

cedure. Hence, this equation takes the general form of:

1. Ŷt = β̂0X
′
t + β̂1

and applies the same kernel function employed in the first regression model325

(equation 2, above) to transform the instantaneous voltage time series values.

Similarly to the Model Fitting and Model Testing sections of the manuscript,

the result of this analysis produced, for each location, a measurement of r2

(based on the residuals generated from comparing predicted with actual values)

for each of the two models. It is worth noting that this comparison statistically330

slightly favored the first model, because it took advantage of two input variables

(power and phase) instead of one, and because we did not separate the data into

a training and a test set.

In sum, these additional analyses determined the degree to which cortical

excitability can be predicted by either the instantaneous voltage or by a linear335

combination of power and phase.

Cortical Mapping

We used commercial Curry software (Neuroscan, El Paso, TX) or the freely

available Freesurfer image analysis suite (http://surfer.nmr.mgh.harvard.

edu/) to create subject-specific three-dimensional (3D) cortical brain models340

from high-resolution pre-operative magnetic resonance imaging (MRI) scans.

We co-registered the MRIs with post-operative CT images using the freely avail-

able Matlab package SPM8 (http://www.fil.ion.ucl.ac.uk/spm/) and ex-

tracted, for each grid electrode, the stereotactic coordinates and functional area

according to the Talairach atlas [74]. We used the 3D cortical template provided345

by the Montreal Neurological Institute (http://www.bic.mni.mcgill.ca) to

display aggregate electrode locations from multiple subjects onto a common

coordinate space, and used our NeuralAct toolbox [75] for visualization.
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Figure 4: The instantaneous voltage of asymmetric oscillations is a better predictor

of cortical excitability than either oscillatory power or phase. Y-axis gives average

model fits (r2s) for each of the three cases. Bars give the median model fit with error bars

representing the 75th percentile. ***p<0.001, paired Wilcoxon Signed Rank test.

Results

We calculated the average model fits (r2) across all 126 task-related locations350

from all 28 subjects and across the motor and auditory tasks. The average r2

values for oscillatory power, phase, and instantaneous amplitude were 0.60,

0.55, and 0.72, respectively (see Fig. 4). Statistical analyses confirmed that

the instantaneous voltage of biased oscillations is a better predictor of cortical

excitability than either oscillatory power or phase (paired Wilcoxon Signed Rank355

tests; p << 0.01). Moreover, the bias-correction is critical for this improvement:

when we did not re-introduce the amplitude bias into the data and rather simply

used bandpass-filtered oscillatory amplitude, the same analysis only gave an r2

value of 0.49 (as compared to 0.72 when we did re-introduce that bias; p <

0.001 when comparing alpha band pass to envelope, or alpha band pass to360

phase, Wilcoxon signed rank tests).

We also determined the distribution of r2 values for both the model that

incorporated the amplitude envelope and phase as well as the model that in-

corporated just the instantaneous amplitude. The results demonstrate that the

predictions of excitability produced by envelope and phase together were statis-365
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tically indistinguishable from those produced by the instantaneous amplitude

alone (p>>0.05, Mann-Whitney U test)11. We also established (using a test

for Type II errors in two-tailed tests of population mean with unknown vari-

ance) that it was unlikely (p<0.001) that we failed to detect an actual difference

between these conditions. Finally, we determined that submitting a randomly370

selected subset of non-task-related locations to the same analysis (n=144 con-

trol locations, i.e., the same number of task-related locations submitted to our

primary analyses ) again demonstrated that models including power and phase

together could not outperform models including only the biased instantaneous

voltage of alpha oscillations (p=0.55, Mann-Whitney U test).375

We considered the possibility that the principal results described here may

have been supported by the choice of binning or modeling approaches, a few

exemplary channels, a few exemplary subjects, by only one of the two tasks, or

by our particular filtering procedure. The following sections demonstrate the

results from additional analyses that establish that this was not the case.380

Control Analyses

Results were not affected by the number of bins chosen for analysis

For our primary analyses, we binned broadband gamma envelope values

into 100 bins according to power, phase, or instantaneous voltage. This binning

procedure has the advantage that the distribution of samples can be equalized385

across the value range. We then reported goodness-of-fit metrics (r2s) for each

of these three measurements in each task-related channel. The number of bins

affects the r2 values, because it affects the number of data points that will be

averaged within each bin (and hence the expected variance of the average within

each bin). While we did not expect that this would preferentially benefit either390

the power, phase, or voltage measurement, we still evaluated the effect of using

different numbers of bins (100, 500, 1000, or 2000) on the results. These control

11This conclusion remained the same even when we low-pass filtered the gamma envelope

at 12 Hz to limit it its rate of temporal variability to that of alpha oscillations.
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analyses are reported in Table 1 and show that using a different number of bins

did not affect our conclusions.

Results were not affected by the binning procedure395

The binning procedure that we used in our main analyses allowed us to

equalize the number of samples within the bins. We did not have a reason to

believe that this binning procedure may preferentially bias one method over

another, but to exclude this possibility, we executed the same procedure on the

raw data samples, i.e., without binning them across the different measurements400

of oscillatory activity. The results show that the instantaneous amplitude was

still better than both the power and the phase measurements (p < 0.05 and

p << 0.05, respectively, paired Wilcoxon signed rank test).

Results were not affected by the choice of model to fit

To test the relationship between oscillatory power, phase, or instantaneous405

voltage and broadband gamma, we chose models that were motivated by pre-

liminary observations and the literature to fit our data. Specifically, we chose

a sigmoid function to model power and instantaneous voltage, and a cosine

function to model phase.

It is possible that the application of different types of models would change410

our conclusions. Our results show that this was not the case. Specifically, we

recomputed our results using a linear fit for power and instantaneous voltage

and a circular-linear fit for phase. Regardless of model choice, instantaneous

voltage was the best predictor of cortical excitability as assessed by r2 model

fits (Table 1).415

To completely eliminate any bias that could be introduced by model choice or

assumptions of linearity, we also applied non-parametric Spearman correlations

or non-parametric circular-linear correlations to all data points. The results

again confirmed that instantaneous voltage was the best predictor of cortical

excitability (p < 0.05 for instantaneous voltage versus envelope; and p << 0.01420

for instantaneous voltage versus phase, Wilcoxon signed rank tests).
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Results were not driven by a few exemplary channels or subjects, or by one task

It is possible that our results were driven by a few exemplary channels. Our

results suggest that this was not the case: of all 126 electrodes included in our

analyses, the majority (100, 79%) showed instantaneous alpha voltage to be the425

best predictor of cortical excitability (i.e., r2s for the instantaneous voltage were

higher than the r2s for alpha power and phase, respectively). It is unlikely that

this result was due to chance alone (p << 0.01, two-tailed Chi-Squared test).

Furthermore, we separated channels by task modality (auditory or motor),

and found similar results: for 64 of the 82 (78%) motor channels, and for 36430

of the 44 (82%) auditory channels, instantaneous alpha voltage was the best

predictor of cortical excitability (p << 0.01 and p << 0.01, respectively).

Finally, we conclude that these results were not driven by one or a few ex-

emplary subjects; an average (median) of 81.7% of locations in each subject had

a better fit for instantaneous voltage than for power or phase (95% confidence435

intervals: 63.4% – 88.5%). Performing this analysis on each task separately

shows the same tendency (a median of 84.5% in motor locations; 95% confi-

dence interval: 62.8% – 90.0%; a median of 100.0% in auditory locations; 95%

confidence interval: 67.2% – 100.0%).

Results were not affected by the filtering procedure440

We used an IIR filter to extract oscillatory activity in our primary analyses.

The use of an FIR filter produced very similar results (r2=0.62, 0.58, and 0.74

(power, phase, and instantaneous amplitude, respectively)), and did not change

our conclusions.

Discussion445

Since the introduction of computer-based quantitative analyses, power and

phase measurements have been the dominant features of oscillatory brain ac-

tivity. The recently proposed Function-through-Biased-Oscillations (FBO) hy-

pothesis [1] synthesized the traditionally separate power- and phase-based views
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into an alternative: oscillatory activity may be best understood as repetitive450

modulations that drive the cortical surface potential from a low (excitatory)

resting voltage towards a higher (inhibitory) voltage. This view introduced a

link between oscillatory activity and its physiological origin, and synthesized

the previous suggestion of rhythmic inhibitory pulsing [62, 58] with initial ex-

perimental observations that suggested the presence of a voltage asymmetry in455

oscillatory activity [59, 60]. This alternative view directly implies that the new

and alternative measurement of the instantaneous voltage of oscillatory activ-

ity should better predict cortical excitability compared to the more traditional

measurements of power or phase. We tested this central prediction in a large

ECoG-based study using data from 28 subjects.460

Our analyses confirmed the results from many previous studies by show-

ing that cortical excitability (as indexed in our study by its proxy, broad-

band gamma) is related to oscillatory power (r2=0.60) and oscillatory phase

(r2=0.55). Critically, they show that cortical excitability is better explained by

the instantaneous amplitude of biased oscillations (r2=0.72), and that the pre-465

cision of the predictions of cortical excitability made by oscillatory power and

phase together did not exceed those of the instantaneous amplitude. Multiple

control analyses lessened the possibility that these findings could be described

by alternative explanations including reliance on effects present in only a sub-

set of the data. These results confirm the most central prediction of the FBO470

hypothesis and support a view of rhythmic inhibitory modulation of the cortex

whose moment-by-moment effect on cortical excitability can be best described

by the instantaneous oscillatory voltage amplitude. See Fig. 5 for an example

that illustrates how cortical excitation (as measured by broadband gamma) can

be high during periods of high oscillatory power, and how it can be continually475

high across peaks and troughs of oscillatory activity when oscillatory power is

low.

The introduction of instantaneous amplitude as a measurement of cortical

excitability does not negate the ability of the nervous system to separately vary

oscillatory power (primarily to exert top-down control) or phase (i.e., phase480
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Figure 5: Oscillatory modulation of cortical activity. A. Time series of broadband

gamma (shaded blue) and asymmetric (biased) alpha activity (shaded orange) in one exem-

plary location from one subject. B. Alpha power is significantly lower in the first half of A

(0 − −1500ms) than in the second half (1500 − −3000ms). Concomitant changes in gamma

power are consistent with a negative correlation between alpha and gamma power. C. When

alpha power is high (e.g., 1500−−3000ms in trace in A), broadband gamma activity becomes

phase locked to the trough of alpha oscillations (phase-locking value (PLV)= 0.71; circular

mean of 194.9◦; p < 0.001, Rayleigh test for non-uniformity in circular data). No significant

phase locking is observed when alpha power is low (0 − −1500ms in trace in A; PLV= 0.11;

p >> 0.05, Rayleigh test for non-uniformity in circular data).
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resetting, to allow for bottom-up influences) to achieve variations in cortical

excitability [1]. Thus, the testing of certain hypotheses (e.g., how a particular

stimulus affects phase resetting in supramodal cortices) will require the separate

evaluation of task-related effects on the constituent measurements of power or

phase.485

The finding that instantaneous voltage regulates cortical excitability has

principal implications for the interpretation of previous and future experimental

studies of oscillatory activity, because it offers an alternative measurement that

is more physiologically motivated, simpler, and more explanatory of cortical ex-

citability. It also has central implications for the interpretation of measurements490

that are derived from oscillatory power or phase. For example, measurements

of phase-amplitude-coupling (PAC) are often used to quantify the effects of

specific tasks on neural signals. However, the view that is reinforced by the

present study suggests that the relationship between oscillatory activity and

cortical population-level activity may represent a (relatively fixed) physiological495

principle rather than yet another variable control mechanism12. If this is cor-

rect, complex measurements derived from oscillatory or cortical activity, such as

PAC, cross-frequency coupling, or amplitude-amplitude coupling, may simply

be explained by changes in their constituent variables.

The introduction of the instantaneous voltage amplitude as an alternative500

measurement may also benefit future basic or applied neuroscientific studies.

Because it provides an accurate measurement of cortical excitability, the use

of instantaneous amplitude may help to detect smaller effect sizes. Further-

more, because scalp-recorded EEG data is much more prevalent than ECoG

data, the significance of this metric will be enhanced if the present findings can505

be replicated with EEG. In this case, the function of the large number of clin-

ical applications supported by scalp-recorded EEG (brain-computer interfaces

(BCIs) that aim to restore function lost by devastating neurological disorders, or

12We are aware that changes in PAC can be associated with particular disorders such as

Parkinson’s Disease [76].
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diagnostic devices such as depth-of-anesthesia monitors) could be improved by

introducing a simple change to the feature extraction component of the signal510

processing framework, i.e., without any changes to sensing or recording hard-

ware.

In our study, we evaluated the relationship between different measurements

of oscillatory activity in the alpha band and broadband gamma activity in motor

and auditory cortical areas. Because this relationship appears to be relatively515

general and can be found for other low-frequency bands and other cortical loca-

tions (e.g., theta oscillations and the hippocampus [77]), it is possible that the

findings from our present study may generalize as well.

Finally, and in particular if the results demonstrated here can be shown

to represent a general phenomenon, our findings have fundamental implica-520

tions on existing theories of cortical information transmission. Specifically,

Communication-Through-Coherence (CTC, [78]) proposed that information across

cortical sites is facilitated by oscillatory phase synchrony across these sites. In

contrast, Gating-By-Inhibition (GBI, [34]) proposed that cortical information

processing is facilitated/inhibited at each location through modulation of oscil-525

latory power. Because the present study supports the fusion of the concepts of

oscillatory power and phase, it suggests that the principles of cortical informa-

tion transmission may alternatively be understood by a model that expands on

and synthesizes CTC and GBI, as proposed in [1].

While the present results are encouraging, many questions currently remain530

unanswered. These questions include the empirical prevalence and other prop-

erties of asymmetric voltage distributions in the data, and the impact of the

instantaneous voltage on important characteristics of cortical information trans-

mission. Proper resolution of these questions should provide important new

insights into the dynamic modulation of cortical function.535
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Table 1: Comparison of model fits for three principle measurements – power,

phase, and instantaneous voltage amplitude. Labels in left-most column delineate the

number of bins across which broadband gamma values were distributed, as well as the choice

of model for power and instantaneous voltage amplitude (“sigmoid” or “linear”). A cosine

function with fixed cycle length and variable phase offset was always used for fitting phase

data. Data in the first block shows average model fits (i.e., mean r2 values across all 126

channels ± standard error of the mean). Data in the block give the probability that the r2

values produced for the two indicated measurements (e.g., power and phase) were statistically

indistinguishable from each other.

Mean Model Fits (rˆ2)

Power Phase Instantaneous Voltage

100 bins sigmoid 0.60 ±0.02 0.55 ±0.02 0.72 ±0.02

500 bins sigmoid 0.37 ±0.02 0.26 ±0.02 0.43 ±0.02

1000 bins sigmoid 0.26 ±0.02 0.15 ±0.01 0.29 ±0.02

2000 bins sigmoid 0.14 ±0.01 0.08 ±0.01 0.17 ±0.01

100 bins linear 0.21 ±0.02 0.15 ±0.02 0.29 ±0.02

Wilcoxon p-values

Inst. Voltage vs. Power Inst. Voltage vs. Phase Power vs. Phase

100 bins sigmoid 0 0 0.085

500 bins sigmoid 0 0 0

1000 bins sigmoid 0 0.001 0

2000 bins sigmoid 0 0.010 0

100 bins linear 0 0 0
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