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dividual variation of brain signals impedes real-time detection of events in raw
signals. To convert these complex signals into results that can be readily understood, current approaches
usually apply statistical methods to data from known conditions after all data have been collected. The
capability to provide meaningful visualization of complex brain signals without the requirement to initially
collect data from all conditions would provide a new tool, essentially a new imaging technique, that would
open up new avenues for the study of brain function. Here we show that a new analysis approach, called
SIGFRIED, can overcome this serious limitation of current methods. SIGFRIED can visualize brain signal
changes without requiring prior data collection from all conditions. This capacity is particularly well suited to
applications in which comprehensive prior data collection is impossible or impractical, such as intraoperative
localization of cortical function or detection of epileptic seizures.

© 2008 Elsevier Inc. All rights reserved.
Introduction

Over the past few decades, increased computing power and novel
electrical, magnetic, and metabolic sensor modalities have offered
exciting new possibilities for studying brain function and have
dramatically increased our understanding of the most complex of
our organs. Despite these advances, current approaches to studying
brain functionwith a variety of sensormodalities, e.g., electroencepha-
lography (EEG), electrocorticography (ECoG), magnetoencephalogra-
phy (MEG), or polysomnography (PSG), are significantly constrained.
This is because signals acquired with these sensors are too complex
that important information could be readily detected in the raw
signals, and because there is often substantial inter-individual
variation of task-related brain signal features so that different signal
features hold relevant information in different individuals. For these
reasons, with fewexceptions (Lachauxet al., 2007;Miller et al., 2007a),
current techniques are usually limited to retrospective analyses.

In consequence, current methodologies typically require the expe-
rimenter to specify (and collect data for) all stimulus/response condi-
tions that are to be evaluated. Subsequently, different mathematical
techniques (e.g., linear discriminant analysis) then analyze the brain
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signal responses by discriminating between the different conditions.
Thus, data for all conditions have to be collected before any decision
can be made. This is a problem in many applications that interrogate
the brain. For example, Crone and others have demonstrated that
signal changes associated with movements and language can be
passively detected in the electrocorticogram (ECoG) (Crone et al.,
1998a, 1998b, 2001; Graimann et al., 2002; Pfurtscheller et al., 2003;
Sinai et al., 2005) and thus could be used to augment current
methods to locate function, such as electrical stimulation mapping.
However, these changes typically involve changes in different fre-
quencies that are subject-specific. Thus, meaningful corresponding
analyses can only be performed after the fact, which impedes inter-
active and exploratory studies. Another limitation is that the time of
occurrence of each condition has to be known. In many scenarios, this
information is not readily available. Hence, these two limitations
typically impede the study of many important problems.

In summary, currently used approaches to studying brain function
are based on discrimination of known conditions, which limits their
applicability in a number of situations. The capacity to effectively
visualize brain signal changes with little a priori knowledge could be
applied to many imaging techniques. It would be a boon to many
applications in research and clinical diagnosis such as dynamic
localization of brain function, brain-computer interfacing, detection
of epileptic seizures, or identification of sleep apneas.

We here present the methodology SIGnal modeling For Real-time
Identification and Event Detection (SIGFRIED) that can be used
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Fig. 1. SIGFRIED vs. linear regression. The use of SIGFRIED (symbolized by one Gaussian
distribution modeling the blue data points (A)) can be used to discriminate between
data from the two conditions (by deriving a distance metric for a new data point Xn (C)).
This procedure requires data from only one class (e.g., signals recorded during rest). The
use of a traditional technique, such as linear regression (B) can also be used for
discrimination (D). In contrast to the detection-based SIGFRIED approach, this
procedure requires data from both conditions.
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effectively in situations that are not adequately served by these
existing approaches. SIGFRIED accomplishes this by implementing a
detection-based approach rather than a discrimination-based
approach. We demonstrate the capacities of this methodology by
showing that it can translate complex brain signals into outputs that
can be readily interpreted by an untrained observer with little a priori
knowledge.

Materials and methods

Subjects

We recorded signals from six patients with intractable epilepsy
who underwent temporary placement of intracranial electrocortico-
graphic (ECoG) electrode arrays on the cortical surface to localize
seizure foci prior to surgical resection. Data for two of these subjects
are presented in this paper. Data for the remaining subjects are pre-
sented in the Supplementary Material. Array placement was deter-
mined entirely by the patients' clinical needs. The study was approved
by the Human Studies Committee of Washington University Medical
Center.

Data collection

Each patient sat in a hospital bed about 75 cm from a video screen.
In all experiments, we recorded electrocorticographic (ECoG) signals
from 32 electrodes using the general-purpose brain-computer inter-
face system BCI2000 (Schalk et al., 2004). All electrodes were
amplified, bandpass filtered (0.1–220 Hz), sampled at 500 Hz, and
stored. First, we collected datawhile the subjectwas resting, i.e., awake
but not actively engaged in any motor or motor imagery task. We then
collected data from several 2-min runs during which the patient was
asked to perform different motor or language tasks in response to
visual cues. In offline analyses, every 400ms the time-series ECoG data
from the past 400 ms were re-referenced using a common average
reference and converted into the frequency domain using the maxi-
mum entropy method (Marple, 1987) and a model order of 25. The
frequency-domain amplitudes for different frequency bands (e.g., mu/
beta (8–12/18–25 Hz) or gamma (i.e., N30 Hz)) were input for
SIGFRIED, which is described below.

SIGFRIED

The SIGFRIED procedure first estimated the statistical properties of
the brain signals recorded during the resting condition. To do this, for
each time point t in the resting data set and for each electrode
location, the vector of frequency-domain amplitudes Xt=[x1,t,…, xD,t]
was input into a modified version of the Competitive-EM (CEM)
algorithm (Celeux and Govaert, 1992; Harris et al., 2000). The CEM
algorithm is a variant of the ExpectationMaximization (EM) algorithm
(Dempster et al., 1977). Each iteration of the EM algorithm consists of
an Estimation (E) step and a Maximization (M) step. The M step
maximizes a likelihood function that is redefined in each iteration by
the E step. The CEM algorithm assigns, in a C step, each sample to the
most likely cluster. (The EM algorithm requires accumulation of
fractional statistics for all clusters, which is slower but more accurate.)
This procedure produced a model consisting of Y Gaussian distribu-
tions that approximated the statistical distribution of the features at
each electrode in the resting data set (Duda et al., 2001). Each of these
Gaussian distributions j was characterized by a mean feature vector
X j , a covariance matrix Σj, and a prior probability wj. As an extension
to the standard CEM algorithm, the number of distributions Y was
automatically determined by choosing Y such that the resulting model
minimized the Akaike Information Criterion (Akaike,1973). See Schalk
et al. (2008) and the SupplementaryMaterial for further description of
this model selection procedure.
Using this statistical model of the resting condition, we then
calculated the likelihood that a new data point Xn was produced by
the resting signal distribution. To do this, we first calculated the
Mahalanobis distance, i.e., essentially a multidimensional z-score
m Xnjjð Þ = Xn−Xj
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. The output of SIGFRIED was the nega-

tive log of that probability (so that resulting values were scaled to
facilitate visualization). Thus, this output could be expected to be small
for samples that are similar to those in the resting signal distribution,
and large for samples that are different than that distribution.

Fig. 1 illustrates the basic principle of the SIGFRIEDmethod for two
arbitrary signal features (e.g., amplitudes in two different frequency
bands). Panel A: The Gaussian background model (green ellipses)
calculated by SIGFRIED for data collected during rest (blue dots) can be
used to discriminate between data from the resting condition and a
testing condition (red dots), but does not depend on the a priori
definition of data from the testing condition. Because it implements a
model withmultiple Gaussians, the current SIGFRIED implementation
supports more complicated distributions and any number of dimen-
sions. Thus, it can master more complicated situations (see Supple-
mentary Material) than those indicated in this simple example. Panel
B: Conventional techniques to discriminate between conditions, such
as linear regression, which derives a regression function (green line),
are calculated between data collected during rest (blue dots) and a
testing condition (red dots). In marked contrast to SIGFRIED, they do
depend on a priori definition of both data conditions and can thus only
be performed after data from both classes have been collected. Panel
C: The output of SIGFRIED for a new data sample Xn represents the
negative log of the probability p(Xn) that this sample was produced by
the description of resting activity. In the example in (C), this proba-
bility p(Xn) will be small, and thus the output of SIGFRIED is large. In
contrast, any data point closer to the description of resting activity
(such as one of the blue dots) would result in a higher probability
value, and thus a smaller SIGFRIED output value. Panel D: The output
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of linear regression is determined using a linear function of both
features in the direction of the regression line.

Mapping

We used radiographs and the LOC package (Miller et al., 2007b) to
identify the stereotactic coordinates of each electrode in the array.
This computer-based procedure implemented the manual procedure
described in (Fox et al., 1985). Each patient underwent stimulation
mapping to identify motor and speech cortices as part of his/her
clinical care. In this mapping, 1-ms 5–10 mA square current pulses
were passed through paired electrodes to induce sensation and/or
evoke motor responses or speech arrest. This mapping delineated
areas important for motor and speech function. These functional areas
can be close to the epileptic focus, but typically do not overlap with it.
Each subject's electrode locations were projected on a template model
of the brain (http://afni.nimh.nih.gov/afni/suma), and SIGFRIED
activation maps were generated using a custom Matlab program.

Real-time implementation

To utilize SIGFRIED in real-time operation, we developed a
SIGFRIED module for the BCI2000 system (Mellinger and Schalk,
2007; Schalk et al., 2004) (see http://www.bci2000.org). BCI2000 is a
general-purpose software system that facilitates development and
implementation of a wide array of data acquisition, stimulus presen-
tation, and brain monitoring applications. The system is available for
free for academic purposes and to date has been acquired bymore than
230 laboratories around the world. The SIGFRIED module can be used
in conjunction with any of the more than ten supported data
acquisition devices, and with different stimulus presentation or
feedback applications. In its current implementation, the output of
SIGFRIED at each location is translated into the radius of a circle at the
electrode location. The location of each electrode, as well as a number
of other display settings, can be parameterized.

Results

We first demonstrate that SIGFRIED can be used to detect changes
in brain signals without prior data collection of all conditions. In
Fig. 2. Visualization of brain function in subject A. (A) Raw ECoG signal traces (blue and red tr
Color-coded running averages of the SIGFRIED output for the three conditions of rest, shoul
subject A, we recorded electrocorticographic (ECoG) signals during a
5-min rest period from 32 electrodes configured in a 8×4 grid. To
establish a description of that resting activity, we submitted a com-
prehensive set (i.e., seven 10-Hz bins from 40–100 Hz) of gamma-
band frequencies (which are more spatially specific but less sensitive
than mu/beta frequencies) to the SIGFRIED procedure described in the
Methods section. This resulted in one resting model for each channel.
Each model had an average of 28 Gaussian clusters. We also recorded
ECoG signals on a different day while the subject rested or moved her
shoulder or hand in response to visual cues. Panel A in Fig. 2 shows the
raw ECoG time course (top two traces) and SIGFRIED output time
course (bottom two traces) for two adjacent electrodes. Shaded bars in
blue and red indicate times cueing for hand and shoulder movements,
respectively. The effect of hand or shoulder movement cannot be
readily detected in the complex raw signals. In contrast, the blue
SIGFRIED output trace detects hand movements while the hand
movement cue was presented, but not while the shoulder cue or no
cue was presented. The red trace shows the same effect for shoulder
movement. Thus, informative results can be gained even without
averaging. Panel B illustrates, in color and for each location, the run-
ning averages of the SIGFRIED output for the three conditions of rest,
shoulder, and hand movement (the three sets of panels were created
with identical analysis and display settings). The different locations
that are active for shoulder and hand, but not for rest, are evident.
Active locations are rapidly defined and remain stable over time. The
movie in the Supplementary Material shows the full topography for
this data set while the subject is executing these tasks.

We also show that SIGFRIED can be used to perform sensorimotor
and language mapping.We used ECoG signals recorded from subject B
and from 32 channels. SIGFRIED first established a description of
activity recorded during a 30-min rest period using a comprehensive
set (i.e., seven 5-Hz bins from 5–35 Hz) of traditional mu/beta-band
frequencies (which are less spatially specific, but more sensitive than
gamma frequencies). This resulted in one resting model for each
channel. Eachmodel had an average of 18 Gaussian clusters. Then, on a
different day, the subject executed two simple motor tasks by
protruding the tongue or repeating the word “move” in response to
visual cues. In addition, the subject was shown flash cards that con-
tained nouns and was asked to generate verbs corresponding to these
nouns. Panel A in Fig. 3 shows the SIGFRIED time course for the
aces on top corresponding to locations marked by blue and red crosses, respectively). (B)
der movement, and hand movement, for each of the 32 locations in the 8×4 grid.

http://afni.nimh.nih.gov/afni/suma
http://www.bci2000.org


Fig. 3. Sensorimotor and languagemapping using SIGFRIED in subject B. (A) SIGFRIED output for the electrode markedwith a square in the brain figure on the bottom right. (B) Average
activations calculated using SIGFRIED. Activations are color-coded. Red corresponds to the highest SIGFRIED values and gray to the lowest values. The three brain topographies were
created with identical analysis and display settings.
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electrode that was responsive to the verb generation task. Arrows
indicate times of cue presentation. Activations in Broca's area can be
readily identified in the time course. Panel B shows average activa-
tions calculated using SIGFRIED. The activation patterns for the motor
tasks (i.e., protruding the tongue and repeating the word “move”) are
similar and markedly different from those for the verb generation
task. These results indicate that, with further verification, these tech-
niques might provide a new clinical tool that could augment existing
techniques for functional mapping.

Finally, we show an example of the real-time implementation of
SIGFRIED executing within the BCI2000 software framework. In the
present implementation, SIGFRIED output values are mapped to the
diameter of a circle that is shown at the location of the respective
channel. These values are shown on a display and updated in real time
(e.g., every 30 ms). In addition, if experimental conditions exist, the
system can be configured to show averages or other statistics of
SIGFRIED values in additional displays. Fig. 4 shows an example
screenshot of this implementation. This combination of SIGFRIED and
BCI2000 is now in use by several institutions to explore rapidmapping
of cortical function using subdural recordings. In these exploratory
tests, meaningful results are typically achieved quickly and after only
3 min of baseline recording. This software system is highly optimized
so that it can accommodate a large number of channels at high
Fig. 4. Example real-time display of the SIGFRIEDmodule in BCI2000. The output of SIGFRIED
time display (i.e., the SIGFRIED values produced at a particular point in time irrespective of
sampling rates. For example, on a 3.4 GHz Pentium 4 computer, the
whole system can provide visualization for 64 channels sampled at
1000 Hz, update this visualization every 30ms, and still only use about
40% of the processor's capacity. (In this example, the average number
of Gaussian clusters per channel was 15, the window for spectral
estimation was 500 ms, and the model order was 120).

In summary, these results give demonstrations that illustrate that
SIGFRIED can produce a dynamic mapping of ongoing brain activity.
These examples highlight SIGFRIED's capacities and illustrate its utility
for analyzing brain signals without the benefit of prior collection of
data from all classes. The Supplementary Material includes a corre-
sponding video that effectively summarizes these capacities, and also
includes additional results from other subjects.

Discussion

This paper describes a novel technique for brain signal analysis
(SIGFRIED) that is well suited to situations inwhich there is little or no
a priori knowledge about the nature and/or timing of task-related
changes in brain activity. This is accomplished by implementing a
measure of novelty rather than discrimination. This technique
expands the range of clinical and basic research studies that can be
conducted.
at each location is translated into the diameter of a circle. The left display shows the real-
condition). The two displays on the right show SIGFRIED averages for two conditions.
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One immediate clinical application for the SIGFRIEDmethodology is
passive mapping of cortical function. The use of SIGFRIED could
complement existing methods to localize function, such as electrical
stimulation, functional magnetic resonance imaging (fMRI), or evoked
potentials. In fact, several institutions are nowexploring the value of the
SIGFRIED/BCI2000 package for this purpose. At the same time, the exact
relationship of this novel passive mapping methodology with existing
techniques is currently not defined. Thus, comprehensive studies to
delineate this relationship and the value of passivemapping are needed.

The SIGFRIED methodology presented here could also expand the
range of analysis options available to basic neuroscience research. At
present, the typical analysismethodology uses a particularmathematical
technique to establish a direct relationship between brain signal features
and particular conditions. This limits the complexity of this relationship
that can be detected, and also impedes the interpretation of that
interpretation. The earlyfield of computer vision faced the same problem
when studies attempted to directly classify individual features (e.g.,
classifying pixels for character recognition). In this field, such problems
are now addressed by applying foreground/background detection and
segmentation techniques to construct intermediate representations (i.e.,
visual primitives) prior to categorization and interpretation. The
application of SIGFRIED to frequency domain or other features of brain
signals could be a possible approach to identify relevant events that could
be grouped into “cortical primitives” (i.e., cortical events of particular
structures). In this case, SIGFRIED would be combined with existing
classification-based strategies. SIGFRIED would produce different topo-
graphical patterns of detected brain signal changes, and conventional
techniques would classify these patterns based on prior information
(such as the patterns' anatomical or physiological relevance).

SIGFRIED is of particular valuewhen it is usedwith complex signals,
and in situations in which it is not practical to record data from all
conditions ahead of time. While SIGFRIED could be utilized with brain
signals acquired with any sensor, simpler signals (such as measure-
ments of the blood oxygen-level dependent (BOLD) response using
fMRI) can be adequately analyzed using existing simple techniques
such as the subtraction of baseline values. Also, while SIGFRIED
requires less a priori knowledge than traditional techniques, it still
needs a subject-specific baseline recording and some understanding of
which features may carry relevant information (see (Schalk et al.,
2008) for more information on the relationship of the number of
features with performance).

An initial implementation of SIGFRIED is presented here, but there
are clearly several ways in which its performance could be enhanced.
For example, in Figs. 2 and 3, we demonstrated that SIGFRIED derived a
description of resting datasets that were recorded on a different day,
and that this description generalized sufficiently to permit effective
analyses on a different day. Adaptation of the resting description to the
varying nature of ongoing resting activity may further improve
performance. As another example, projections of the typically multi-
dimensional feature space in more compact representations (e.g.,
using Principal Component Analysis (PCA)) may prove beneficial.

SIGFRIED derives its advantages mainly from a trade-off of sensi-
tivity and specificity.While it can respond to any brain signal change for
each description of resting activity (e.g., for each brain location), and
thus is very sensitive, it cannot necessarily differentiate among diffe-
rent signal changes within each location (except, as in the examples in
Figs. 2 and 3, these changes reflect distinct topographical patterns).
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