
Simultaneous real-time monitoring of
multiple cortical systems

Disha Gupta1,2,3, N Jeremy Hill1,6, Peter Brunner1,2, Aysegul Gunduz1,2,4,
Anthony L Ritaccio2 and Gerwin Schalk1,2,5,7

1Wadsworth Center, New York State Department of Health, Albany, NY, USA
2Department of Neurology, Albany Medical College, Albany, NY, USA
3Early Brain Injury Recovery Program, Burke-Cornell Medical Research Institute, White Plains, NY, USA
4 J Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville,
FL, USA
5Department of Biomedical Sciences, State University of New York at Albany, Albany, NY, USA
6Translational Neurological Research Laboratory, Helen Hayes Hospital, West Haverstraw, NY, USA

E-mail: schalk@wadsworth.org

Received 7 October 2013, revised 2 June 2014
Accepted for publication 4 June 2014
Published 31 July 2014

Abstract
Objective. Real-time monitoring of the brain is potentially valuable for performance monitoring,
communication, training or rehabilitation. In natural situations, the brain performs a complex
mix of various sensory, motor or cognitive functions. Thus, real-time brain monitoring would be
most valuable if (a) it could decode information from multiple brain systems simultaneously, and
(b) this decoding of each brain system were robust to variations in the activity of other
(unrelated) brain systems. Previous studies showed that it is possible to decode some information
from different brain systems in retrospect and/or in isolation. In our study, we set out to
determine whether it is possible to simultaneously decode important information about a user
from different brain systems in real time, and to evaluate the impact of concurrent activity in
different brain systems on decoding performance. Approach. We study these questions using
electrocorticographic signals recorded in humans. We first document procedures for generating
stable decoding models given little training data, and then report their use for offline and for real-
time decoding from 12 subjects (six for offline parameter optimization, six for online
experimentation). The subjects engage in tasks that involve movement intention, movement
execution and auditory functions, separately, and then simultaneously. Main results. Our real-
time results demonstrate that our system can identify intention and movement periods in single
trials with an accuracy of 80.4% and 86.8%, respectively (where 50% would be expected by
chance). Simultaneously, the decoding of the power envelope of an auditory stimulus resulted in
an average correlation coefficient of 0.37 between the actual and decoded power envelopes.
These decoders were trained separately and executed simultaneously in real time. Significance.
This study yielded the first demonstration that it is possible to decode simultaneously the
functional activity of multiple independent brain systems. Our comparison of univariate and
multivariate decoding strategies, and our analysis of the influence of their decoding parameters,
provides benchmarks and guidelines for future research on this topic.

S Online supplementary data available from stacks.iop.org/jne/11/056001/mmedia

Keywords: electrocorticography, movement intention, auditory processing, real-time decoding,
simultaneous decoding

Journal of Neural Engineering

J. Neural Eng. 11 (2014) 056001 (19pp) doi:10.1088/1741-2560/11/5/056001

7 Author to whom any correspondence should be addressed.

1741-2560/14/056001+19$33.00 © 2014 IOP Publishing Ltd Printed in the UK1

mailto:schalk@wadsworth.org
http://stacks.iop.org/jne/11/056001/mmedia
http://dx.doi.org/10.1088/1741-2560/11/5/056001


1. Introduction

Researchers in the field of neural engineering envision that
real-time decoding of brain activity can be used for perfor-
mance monitoring, functional restoration and/or rehabilitation
[1–9]. One critical and typically ignored issue of such brain-
based applications is that real-world tasks usually directly or
indirectly involve multiple sensory, motor and/or cognitive
brain processes. Thus, decoding information from the brain
may need to access information from different brain systems
and needs to be robust to variations in other (unrelated) brain
processes. Previous (mostly offline) studies have shown that it
is possible to relate specific functional parameters to brain
signal features for isolated brain functions. These demon-
strations usually involved the motor or auditory systems, and
were accomplished using non-invasive electro-
encephalography (EEG) [3, 10, 11], invasive electro-
corticography (ECoG) [12–28], or invasive single-neuron
recordings [29–34]. However, it remains unclear whether the
relationships between different functional parameters and
brain signals are conserved during real-world tasks, which
tend to be complex and multi-modal and often occur in varied
and unpredictable contexts. We aim to determine whether it is
possible to decode multiple brain systems when they are
engaged simultaneously. In doing so, we also set out to assess
the effect of various decoding parameters on decoding, and
the robustness of each task to the activity of the other brain
processes. If they could be further validated in other contexts,
these procedures would have important implications for the
practical utility of brain-based systems for monitoring, func-
tional restoration or rehabilitation. In the present study, we
simultaneously extract from ECoG signals, in real time,
parameters relating to motor preparation, motor execution,
and auditory processing. Thus, we provide the first demon-
stration of simultaneous multiple-system decoding, as well as
the first evidence that the decoding of an individual brain
system can be stable even when other brain processes are
engaged.

In our study, we use ECoG signals from subdural grids
implanted on the surface of the brain. In contrast to metabolic
methods such as functional magnetic resonance imaging,
ECoG has high temporal resolution (<1 ms). In contrast to
single-unit recordings, ECoG signals provide detailed infor-
mation about brain function across large areas of the brain,
and also appear to have distinct advantages in signal robust-
ness [35]. In contrast to non-invasive EEG signals, ECoG has
much greater signal-to-noise ratio [20], minimal artifacts,
higher spatial resolution (<1 cm), broader bandwidth
(0–500 Hz) and higher amplitude (50–100 μV for ECoG in
contrast to 10–20 μV for EEG). ECoG signals in humans are
usually acquired from people with epilepsy who undergo
invasive pre-surgical monitoring for localization of
epileptic foci. Recent offline studies have shown that ECoG
amplitudes in certain frequency bands carry substantial
task-related information, such as motor execution and plan-
ning, auditory processing and visual-spatial attention
[16–18, 22, 23, 27, 36–39]. Most of this information is
captured in the high gamma range (around 70–110 Hz),

suggesting that high gamma activity provides reliable infor-
mation about neural activity of local cortical populations.
While these properties of ECoG are attractive, the present
clinical circumstances of data collection add several situation-
based challenges and limitations, in particular for real-time
research studies. Efficient and effective ECoG-based research
requires robust and general protocols [40]. Data acquisition
and implementation must be carried out within a short period
of 2–3 days, constrained by post-surgery recovery, clinical
monitoring and mapping procedures, visitors, epileptic sei-
zures, and variations in the subjectʼs health, alertness and
motivation. Thus, and probably not unlike eventual real-world
application of such technologies, we must work within
restricted time and space to set up and adapt data acquisition
and processing systems. These systems must be portable,
interruptible, compatible with the clinical environment
required for a post-surgical patient, and resistant to the signal
interference generated by medical equipment in the
patientʼs room.

These requirements are even more severe for the multi-
modal real-time decoding application discussed here. The
processing pipelines for offline analysis and for real-time
decoding should be identical, so that results from offline
analysis can be transferred seamlessly to the real-time setting.
In practice, this means that both real-time and offline pipe-
lines must work within the constraints imposed by both the
real-time nature of the application and the clinical setting of
ECoG measurement. This means that (i) there is limited time
for pre-processing, artifact detection and removal, and adap-
tation of the many decoder parameters to the characteristics of
the subject and of the environment (this is a particular pro-
blem if the decoder is not robust to changes in these char-
acteristics from session to session, requiring time-consuming
repetition of parameter optimization); (ii) the total amount of
data is limited, and within this, calibration data must strictly
precede test data, and the amount of calibration data must be
minimized to maximize the amount of test data for validation
of decoder performance; (iii) signal processing and decoding
algorithms, as well as visualization routines, must be simple
enough, and efficiently implemented, to run in real-time on
the available computing hardware; (iv) the hardware com-
ponents must be assembled into a self-contained, mobile
system that can be moved around a crowded hospital envir-
onment and removed quickly in an emergency; and (v) the
software must allow measurement to be interrupted without
loss of data, resumed quickly, and repeated efficiently.

We worked through these challenges and constraints for
conducting the four phases of our study. These phases
included: method optimization, generalization testing, cali-
bration, and real-time testing. For the first two phases, we
used ECoG data collected during motor preparation, motor
movements, and auditory processing from an initial group of
six subjects. These first two phases resulted in optimized
procedures for data collection, artifact rejection, signal pre-
processing, and classifier training. We then applied these
optimized procedures to six new subjects. In five of these
subjects, we realized real-time experiments that
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simultaneously decoded aspects of movement planning,
movement execution and auditory processing.

2. Methods and materials

All subjects were epilepsy patients that were undergoing
invasive ECoG monitoring (see section 2.1 for details). Our
study contained four phases. Phases I and II involved purely
offline (i.e. retrospective) analyses of data from the first six
subjects. Phases III–IV were each performed as part of the
real-time study with six different subjects. An overview of
each of these phases is given in the following paragraphs:

Phase I (offline optimization): we first retrospectively
investigated the effect of various decoding approaches and
parameter settings using the data from the first measurement
session performed by subjects 1–6. ECoG data were recorded
as described in section 2.3, together with stimulus timing
information, while the subjects performed the experimental
tasks detailed in section 2.2 in separate runs. We aimed to
acquire at least 300 trials of an eight-target center-out joystick
task, and two runs, each 3–5 min in length, of a music lis-
tening task. In addition, Brodmann-area assignments (see
section 2.4) and functional maps (section 2.5) were obtained
for each subject. These data formed a basis for offline
exploration, by cross-validation, of the decoding parameters
and strategies for optimal real-time performance for each of
these tasks. This is described in section 2.6. Three decoders
were optimized: one for the intention to move (motor plan-
ning in the joystick task), one for movement (motor execution
in the joystick task), and one for auditory processing (from
the listening task). Optimization results are presented in
section 3.1.

Phase II (generalization): for four of the first six sub-
jects, we had the opportunity to repeat the data collection
session on a subsequent day. For these datasets, the optimal
decoders from phase I were used to assess how well our
system could generalize and transfer between sessions that
were widely separated in time.

Phase III (calibration and decoding evaluation on
separate tasks): for each of the subjects 7–12, we acquired
calibration data as well as Brodmann-area assignments and
functional mapping information, as described above for phase
I. As for subjects 1–6, the different tasks were recorded in
separate runs. Decoders for intention, movement and auditory
processing were then configured separately based on these
data, using the parameter settings that had been found to be
optimal in Phase I. Once the data had been recorded, this
process of configuration lasted no more than a few minutes. A
preview of the decoders’ performance was estimated by re-
training them on only the first 80% of the data, and evaluating
them on the unseen final 20%. Real-time performance was
also subsequently captured for each of these separate tasks.

Phase IV (simultaneous multi-modal decoding): for
each of the subjects 7, 8, 9, 10 and 12, we acquired data
during a subsequent multimodal real-time session. Since there
was no coverage of motor or premotor cortex in subject 11,
we assessed only auditory processing in this subject. The

other subjects performed the center-out joystick task in the
presence of background music. Thus, for the first time,
decoders trained on separate tasks could be assessed during
multi-modal cortical processing. During this session, the
experimenterʼs control screen allowed visualization of the
functional activations from the three decoders (intention,
movement and auditory processing) in real time. Decoder
outputs were displayed in real time in the form of bar gauges,
together with scrolling graphs that captured the last 10 s’
history of the time-varying signals. To deal with drifts in
signal offset as a function of time, the gauges continuously
rescaled themselves such that the vertical axis contained
everything between the 1st and 99th percentiles of the values
output over the preceding 10 s. Elements of the real-time
visualization screen are shown in figure 1. The real-time
sessions were also captured as videos, with subjects’ consent.
The video recorded the screen view as presented to the sub-
ject, synchronized in time with the experimenterʼs control
screen view. Decoding performance is given in section 3.5.
Movie S1 in the supplementary data (available from stacks.
iop.org/jne/11/046021/mmedia) shows an excerpt from the
video recording of subject 12.

2.1. Human subjects

The ECoG data in this study were collected at the Epilepsy
Monitoring Unit at Albany Medical Center (AMC) from
twelve subjects who were candidates for resection surgery to
treat drug-resistant epilepsy. They underwent invasive eva-
luation for surgical planning, where an array of electrodes was
temporarily placed on the surface of the brain for the purposes
of localizing the seizure focus and delineating eloquent cor-
tex. As described in [40], clinical brain signal monitoring and
review was not compromised at any time as we used a con-
nector that split the cables coming from the patientʼs
implanted electrode array into one set that was connected to
the clinical monitoring system and another that acquired data
for research purposes. All data were collected with approval
by the Institutional Review Board of AMC, following sub-
jects’ informed consent and contingent on their clinical state,
and willingness at the time of measurement. A brief clinical
profile of the subjects is given in table 1, and the spatial
arrangement of their electrodes is shown in figure 2.

2.2. Stimulus and task design

The cortical functions that we probed in the current study
were intention (i.e. motor planning in a joystick task),
movement (i.e. motor execution in a center-out joystick task)
and auditory processing (i.e. listening to music). This
selection was based on recent studies that demonstrated, in
retrospective analyses, the relationship with parameters of
these functions with brain signals [18, 19, 21–24, 31, 36–38].
Recordings also included a rest condition.

2.2.1. Center-out joystick task. We examined intention and
movement with a standard center-out joystick task. The
subject was equipped with a joystick and an LCD monitor
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placed at eye level at a viewing distance of 55–60 cm. The
monitor had a built in eye-tracking device that was calibrated
to the subjectʼs eyes at the start of every new session.

The task consisted of discrete trials that lasted up to 6 s
each. These trials were performed in runs of 30 trials, after
which the subject could take a short break. In each session,
we collected at least ten runs, for a total of at least 300 trials.
A fixation cross was displayed at the center of the screen at all

times during a run, and the subject was asked to maintain
fixation on the cross. The time course of a typical trial is
shown in figure 3(a). Each trial began with the presentation of
a colored square for one second at the target location—this
location was chosen randomly and independently on each
trial from one of eight positions located equidistant from the
center, at 0, 45, 90, 135, 180, 225, 270, and 315°. This one-
second period was considered the motor planning or

Figure 1. The interface for visualizing decoder outputs in real time. (a) The real-time viewer for the raw ECoG signals; (b) the video feed of
the subject performing the task; (c) and (d) the decoder outputs (in blue) for the intention and movement decoders, respectively, with the
respective critical periods marked in red (arrows have been added to emphasize the critical periods’ onset times); (e) the decoder output (in
blue) together with the sound RMS recorded by the microphone (in red); (f) and (g) the cortical model for this subject and the electrodes that
showed significant task-related high-gamma activation in the intention and movement periods respectively; (h) the decoded sound RMS and
microphone output RMS as bar-gauge visualizations that fluctuate in real time; (i) a view of the application screen during the intention period
of the center out joystick-task. The decoder traces (c), (d) and (h) scrolled continuously from right to left, with the most recent values plotted
at the right-hand edge.

Table 1. Clinical profiles of the subjects who participated in the study

Subject Age Sex Handedness Performance IQ Epilepsy classification Num. of electrodes

1 29 F R 136 Left temporal 96
2 56 M R 87 Left temporal 101
3 25 M R Not known Left frontal 96
4 25 M R 114 Right frontal 100
5 26 M R 100 Right temporal 111
6 45 M R 95 Left temporal 58
7 49 F L 99 Left temporal 69
8 52 M L 91 Left parietal 64
9 29 F R 95 Left temporal 120
10 45 F L 84 Left temporal 61
11 60 M R 75 Left parieto-occipital 59
12 26 F R Not known Left temporal 128
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ʻintention periodʼ, after which a small spherical cursor was
presented at the center of the screen. The presentation of the
cursor was the cue for the ʻmovement periodʼ to begin: while
maintaining central fixation, the subject had to use the
joystick to move the spherical cursor until it hit the square
target. When the cursor hit the target, it turned green to
indicate a hit. A maximum of three seconds was allowed for
this movement, after which there was a one-second ʻrest
periodʼ, with only the fixation cross visible. The trial was
aborted if, at any time, the subjectʼs gaze shifted away from
the fixation cross by more than 20% of the screen height for
more than 500 ms.

2.2.2. Listening task. The task used for decoding auditory
processing involved listening to 3–5 min of music—either
The Wall by Pink Floyd, or All Right Now by Fire and Ice.
The music was binaurally presented to each subject using
standard speakers (50 Hz–20 kHz audio bandwidth). The
sound volume was adjusted to a comfortable level for each

subject. Each piece of music was followed by 2 min of rest,
during which the subject was asked to relax with eyes open,
and avoid movement or speech. The typical timeline is shown
in figure 3(b). The task did not involve any visual or motor
engagement.

2.3. Data acquisition

To implant the ECoG grids, one or two subdural ×8 8 grids
of platinum–iridium electrodes were placed subdurally on the
surface of the brain, together with one or more strips that
consisted of 4–8 electrodes configured in a single row. The
electrodes were of one of two types: those supplied by Ad-
Tech (Ad-Tech Medical Instrument Corporation, Racine, WI,
USA) had a 2.3 mm exposed recording surface and an inter-
electrode distance of 1 cm; those supplied by PMT (PMT
Corporation, Chanhassen, MN, USA) had a 3 mm exposed
surface and an inter-electrode distance of 6 mm. The grids
were placed solely as required for clinical evaluation, without

Figure 2. For each of the subjects 1–12, subdural ECoG electrode locations are shown as red dots on a rendering of the subjectʼs three-
dimensional surface model of the cortex. The brain model and electrode locations were derived from co-registration of pre-implantation MRI
and post-implantation CT.

Figure 3. (a) The time course of a typical trial in the center-out joystick task that we used to investigate intention-to-move and movement. The
subject fixated on the central cross throughout the trial. The 1 s intention period began with a directional visual cue (red square) presented on
the screen at the target location. The 1 to 3 s movement period began when a cursor appeared in the center of the screen. This cued the subject
to begin joystick movement to guide the cursor to the target. If the target was hit, it turned green. Afterwards, there was a 1 s rest period
before the next trial began. The rest period also began if the cursor did not hit the target within a 3 s period. (b) The time course of the
listening task used to investigate auditory processing: the subject listened to 3–5 min of popular music, then rested quietly for 2 min.
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any consideration of the research. They were typically
implanted for a period of 4–7 days.

Signals from these ECoG electrodes were fed simulta-
neously to the research and the clinical systems via splitter
boxes (Ad-Tech), with separate ground connections for the
two systems. The research system was connected only during
research measurements, and collected ECoG signals at
1200 Hz sampling rate using eight synchronized FDA-
approved 16-channel g.USBamp amplifier/digitizer units (g.
tec, Graz, Austria). Electrodes that were distant from the
expected seizure focus, and expected to be inactive or least
eloquent with regard to the investigated functions, were
selected as the reference and ground electrodes. Data collec-
tion, stimulus presentation, and synchronization of data, sti-
muli, and joystick/eye movements were accomplished using
the BCI2000 software platform [41, 42].

To monitor and enforce fixation, we recorded subjects’
eye gaze using a Tobii T60 eye-tracking monitor (Tobii
Tech., Stockholm, Sweden) that was positioned at eye level
55–60 cm in front of the subject and was calibrated for each
subject at the start of each experimental session.

We recorded the music that was played during the real-
time sessions using a dynamic (moving-coil) microphone
(frequency response of 50 Hz–15 kHz). The microphone was
electrically isolated and had a unidirectional (cardioid) pickup
that minimized unwanted background noise. The recorded
sound was fed back into the BCI2000 software pipeline, in
real time, parallel to the ECoG data acquisition, to visualize
the auditory decoding performance for that piece of music.

2.4. Electrode localization

To localize the electrodes, we collected different types of
imaging for each subject: (a) pre-implantation magnetic
resonance images (MRI) (T1-weighted coronal SPGR slices,
1 mm width, imaged using a GE 1.5 T scanner); (b) intra-
operative photographs of the exposed cortical surface before
and after grid placement; (c) post-implantation computer
tomography (CT) scans (1 mm slice width, skin to skin); and
(d) post-implantation lateral and frontal x-ray images.

We localized the electrode grids by first extracting the
three-dimensional (3D) anatomical information from the
subject-specific pre-implantation MRI images. We then per-
formed a landmark- and volume-based co-registration with
the post-implantation CT images using CURRY software
(Compumedics, Charlotte, NC, USA). This allowed the pro-
jection of grid electrodes onto the modeled cortical surface,
including those that were hidden from view during the sur-
gery. For subject 5, post-operative CT images were not
available. We localized the grid for this subject with pre-
implantation MRI and the post-implantation x-ray images
using the method described in [36]. Electrode locations were
verified visually, using the intra-operative grid implantation
photographs, based on vascular landmarks. The cortical
model and the electrode coordinates were then exported in
MATLAB-readable formats for subsequent processing and
visualization.

The electrode coordinates were also transformed to the
Talairach coordinate system (based on the Anterior Com-
missure as the origin) and an approximate Brodmann-area
assignment that was determined for each electrode using the
Talairach Daemon [43, 44]. The resulting approximate loca-
tions were used for identifying neuroanatomical cortical
structures relevant for the functions under study. This helped
to screen for electrodes with (possible) dominant artifactual
activations (i.e. electrodes that had significantly high activa-
tions during the task, but were in areas far removed from the
cognitive process being assessed).

2.5. Functional mapping

For each subject, we established a functional map of receptive
language and hand/oral motor function using the SIGFRIED
mapping procedure [23]. SIGFRIED compared, at each
electrode, the statistical distributions of gamma activation
between the resting and activity conditions. The results pro-
vided probabilistic maps of significant gamma activation
during the functional tasks.

These ECoG- or stimulation-based mapping results
allowed us to constrain the choice of electrodes suggested by
the subsequent calibration procedures to those locations that
were most neuro-anatomically relevant to the task.

2.6. Decoding methods

The common decoding pipeline used in the above phases
consisted of preprocessing/feature extraction, followed by
either univariate or multivariate decoding.

Preprocessing and feature extraction:

(i) The signals were digitally filtered using an IIR notch
filter centered on 60 Hz to remove power-line noise.

(ii) We first excluded channels from the analysis if they were
still heavily affected by electrical artifacts such as noise
due to lack of electrode contact, non-physiological
artifacts such as from monitoring devices or movements,
or physiological artifacts such as from paroxysmal
activity or seizures.

(iii) The signals were either referenced to the single ECoG
electrode that had originally been chosen as a measure-
ment reference, or re-referenced to the common average
of all channels (CAR). We evaluated the impact of these
two referencing methods during the optimizations of
Phase I, and used CAR in subsequent phases.

(iv) The signal was windowed using a rectangular window
sliding in steps of 50 ms. For our decoding of intention or
movement, one such window was extracted for each trial,
centered 500 ms after the start of the relevant period of
the trial, for each of the three periods of interest
(intention, movement and rest). During optimization,
window lengths of 150, 250, 350, 450, 550 and 650 ms
were compared; we selected 650 ms for subsequent
phases of the study. For our decoding of the temporal
envelope of sound root-mean-square (RMS), we com-
pared the use of window lengths of 150–650 ms windows
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as well, where 650 ms, with a constant lag of 200 ms,
was selected as an optimal setting for the study. The
lower range of window lengths to be tested was selected
based on the commonly used window lengths in similar
ECoG studies [13, 23]. Our choice for the higher range of
the window length was somewhat more arbitrary, but
reflected the trade-off between inclusion of more data for
decoding and the requirement for rapid updates and
feedback in a real-time system.

(v) The amplitude spectrum was then estimated for each
channel and each time-window using an auto-regressive
model optimized via Burgʼs Maximum-Entropy Method
[45]. We compared model orders of 10, 25, 50 and 100,
and used a model order of 50 for all subsequent real-time
experiments. Spectral amplitudes were estimated using
the resulting model and summated over the range
70–100 Hz. The result was a single estimate of high-
gamma activation per channel, per time-window. A
growing number of recent studies are suggesting that
activity in the gamma band reflects a broadband
phenomenon rather than a narrowband oscillation
[36, 37]. In our study, we chose the particular frequency
band (70–110 Hz), because it avoids the 60 Hz and
120 Hz frequencies that may be affected by line noise.
Also, 70 Hz is far beyond the highest frequency (about
30 Hz) at which low-frequency oscillations can be
observed; and 110 Hz is much lower than the noise floor
of the amplifier system (about 200–250 Hz).

(vi) The high-gamma amplitudes were then represented on
either a linear or a log scale. After initial evaluations, we
chose the log scale for representing the ECoG features in
subsequent analyses.

Multivariate decoding: the decoding component mapped
extracted features to estimates of engagement in the
relevant neurocognitive function as compared to resting
state. The final output signal was computed by combining the
high-gamma activation features across channels using a
weighted linear summation.

For the music listening task, multiple linear regression
was used to regress the music RMS (computed from the
music file in sliding windows of the same length as the
window used for ECoG high-gamma amplitude estimates)
against the ECoG high-gamma estimates.

For the joystick task, detectors for the intention state and
the movement state were built by considering the two
corresponding binary classification problems, intention versus
rest and movement versus rest. For completeness, we also
show results for the intention versus movement problem.
Linear weights for these binary classification problems were
obtained with the stepwise (SWLDA) multilinear regression
method, which determined the weights of the linear function
so as to minimize the squared error between the output
estimates and labels of the classes (−1 and +1).

Univariate decoding: previous studies [35, 37] showed that
some functions can be tightly spatially localized on the ECoG

grid. We found that our functional mapping results from the
SIGFRIED system [23] often corroborated this observation.
On the assumption that the single most functionally relevant
spatial location is unlikely to change as a function of time at
the spatial scale at which we record, it seemed plausible that
the selection of a single electrode might provide good
performance while generalizing well across sessions and
contexts, and minimizing the risk of overlap between
decoders intended to reflect different brain functions.

To test this hypothesis, we compared the multivariate
decoder against a univariate decoder, in both our optimization
(Phases I–II) and where possible in our real-time test (Phases
III–IV). The univariate decoder was based on manual
selection of a single electrode location, as selected by the
researcher who integrated the following multiple sources of
information:

(i) topographical maps of the coefficient of determination (
r2) that were calculated, for each electrode, between band
power of the ECoG signal and the state of task-
engagement (see section 2.7);

(ii) anatomical structures covered by the electrodes, as
obtained from various grid localization methods, such
as intra-operative photographs (figures 4(a, b)), pre-
operative and post-operative CT and MRI imaging, x-ray
and MRI imaging (figures 4(c, d)), and surgical notes
(figure 4(f)) (described in section 2.4);

(iii) topographical maps of Brodmann areas that were derived
by rendering the patient-specific 3D cortical anatomy
with electrodes in the Talairach coordinate space
(figure 4(e)) (described in section 2.4);

(iv) functional activity maps obtained from SIGFRIED
(figures 4(g,h)) or electrical cortical stimulation (see
section 2.5);

(v) areas masked/activated by epileptiform activity as
defined by clinicians.

2.7. Decoding assessment

We assessed decoding performance in the following ways:

• Assessment of relevance of individual features: to assess
the extent to which ECoG activity at one or more
locations contributed to solving a prediction problem, we
used the coefficient of determination (r2). This metric
reflects the fraction of the variance in the predictorʼs
output that is explained by the differences in the target
labels. For binary classification problems, the labels were
arbitrary (−1 and +1), whereas for our listening task, the
labels were the RMS values of the music envelope,
computed from the music file using sliding windows of
the same length as the windows used for feature
extraction from the ECoG. When we assessed the
significance of an r2 value, we used Bonferroni-
correction to account for multiple comparisons.

• Assessment of predictor performance in the music
listening task: this was quantified by computing the
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Spearman correlation coefficient ρ between the predictor
output and the running RMS values of the music RMS.

• Assessment of trial-based classifier performance: one
measure of intention and movement prediction perfor-
mance is classification accuracy (CA) of a binary
classifier. To compute CA, we extracted just one discrete
exemplar of each class (intention, movement and rest)
from each trial of the center-out joystick task. CA is
given by the proportion of these exemplars that the
classifier assigns to the correct class in a binary
subproblem (intention versus rest, movement versus rest,
or intention versus movement). It is estimated by training
the classifier on one subset of the exemplars and testing it
on another non-overlapping subset—either repeatedly by
cross-validation, or via a single training/test fold, as
described in section 2.6.

• Assessment of intention and movement predictors in real
time: in a realistic brain-monitoring application, classi-
fiers for each brain state must be trained without
complete prior knowledge of the classes against which
their output must distinguish itself. For example, if we
want to build a monitoring system that includes a gauge
labelled ‘intention to move the hand,’ then this gauge
should ideally distinguish intention to move the hand
from all other possible states (i.e. from rest, and from
actual movement of the hand, but also from the intention
to move other body parts and from the performance of an
arbitrary range of other mental tasks). We also assume
that the outputs of a monitoring system would not be
assessed at single discrete pre-defined time-points (as
assumed in an assessment based on CA) but as

continuous traces (or at least, traces that are updated in
small (e.g. 50 ms) increments).

Therefore, we wished to ask: given a classifier trained to
distinguish a certain brain state (say, intention) from the
resting state, how well does it distinguish all the time win-
dows of the test set that could be considered to reflect that
state (intention), from all other time windows (non-inten-
tion)? To quantify this, we labelled each time-window as
intention if the majority of the windowʼs samples occurred
during the intention period, and as movement if the majority
of the windowʼs samples occurred during a movement period.
We judged the detector for a brain state to have predicted that
state when its output exceeded the 95th percentile of its
previous activity, computed over a 10 s sliding window (the
same length of time that our visualization window displayed
at any one time). We then computed sensitivity and specificity
of these detectors for intention versus non-intention windows,
and for movement versus non-movement windows:

= +
= +

sensitivity true positives / (true positives false negatives)
specificity true negatives / (true negatives false positives)

In the optimizations of phase I, where we sought to find
the optimal feature extraction parameters, the split into
training and test subsets was performed repeatedly in a ten-
fold cross-validation procedure: the data were divided into ten
parts, each tenth took a turn at playing the role of the test set
for a classifier trained on the remaining 9 tenths, and the
resulting CAs on these ten test sets were averaged. We
ensured that the trials were temporally contiguous within each
test fold—that is, we performed blockwise cross-validation—

Figure 4. Summary of some of the ancillary sources of information used by the authors to make an informed choice of functionally relevant
electrodes when employing the univariate decoding approach. (a) An intra-operative photograph taken before grid placement; (b) an intra-
operative photograph with grid placement; (c) grid positions from a post-implantation CT; (d) anatomical information from a pre-operative
MRI; (e) a 3D cortical model rendered from a pre-operative MRI and a post-implantation CT, from which approximate Brodmann-area
assignments are made by the Talairach daemon; (f) surgical sketches and notes; (g) the SIGFRIED mapping for a complex hand motor task
and (h) the SIGFRIED mapping for a listening task.
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to avoid potential inflation of the CA estimates due to non-
stationary effects in the data [46].

Cross-validation in ten independent folds was only pos-
sible for automatic classifiers, i.e. for our automated multi-
variate procedures. Our univariate classifiers involved human
judgment, which could not be guaranteed to be independent
on ten folds. Therefore, for comparison of univariate and
multivariate methods during Phase I, we used an offline sin-
gle-fold training and test procedure for both predictor types,
whereby the first 80% of the data (counting chronologically)
were used for training and the subsequent 20% were used for
testing. This schedule was used both for classifier perfor-
mance and for assessment of music listening prediction.
During phase III, the single-fold method was also used to
provide a preview of decoder performance based on the
calibration data.

In assessing generalization from phase I to phase II, and
from phase III to phase IV, one whole session was used for
training and the subsequent complete session was used for
testing.

3. Results

The results of this study are presented below. They address
the following questions:

(i) What is the best combination of parameters settings for
decoding intention and movement states in the joystick
task, and how sensitive is the decoder to variation from
this setting? Similarly, what is the best combination of
parameter settings for decoding auditory processing?

(ii) How well can we expect the decoders to generalize to a
second session? Furthermore, will decoders trained on a
trial-based system, with brain state classes considered
separately against the rest state, perform well in a
continuous real-time setting where they must distinguish
their preferred state from both rest and from other non-
preferred non-rest states?

(iii) Which decoding approach, the automated multivariate
method or the expert-guided univariate method, provides
better decoding performance?

(iv) How many training trials are required to achieve good
multivariate decoding performance?

(v) How well will our decoders generalize to a second real-
time session in which the tasks are performed simulta-
neously? Will they perform well according to a real-time
(continuous rather than trial-based (see section 2.7))
criterion?

3.1. Parameter optimization and sensitivity

Our first question concerned the optimal parameter setting for
intention and movement decoding, and the sensitivity of the
decoder to parameter variation. As described in section 2.6,
we evaluated the impact of several types of processing:
referencing strategy (CAR/no CAR), window length (150,
250, 350, 450, 550 or 650 ms), AR model order (10, 25, 50 or

100), and gamma transformation (log/linear). We addressed
these questions using the automated multivariate decoding
approach and repeating the ten-fold cross-validation proce-
dure for every possible combination of parameters. The
classification accuracies were averaged across the first six
subjects. They indicated the following optimal settings:

Subproblem CAR Log band
power

AR
model
order

Window
length (ms)

Intention
versus rest

Yes No 50 650

Movement
versus rest

Yes Yes 10 650

Intention versus
movement

Yes Yes 10 650

Figure 5 shows the sensitivity of the decoders to the
variation in these settings. The optimization results indicated
that: first, the use of a log bandpower scale improved CA in
movement versus rest and movement versus intention, but not
in intention versus rest, albeit all of these effects were very
small. Second, the use of CAR spatial filter improved the
classification accuracies in all subproblems by about five
percentage points. Third, a lower AR model order of ten was
preferable for movement versus rest and movement
versus intention, while a higher model order of 25 or 50 was
preferable for intention versus rest. We chose to boost the
performance of the lower performer of our two detectors by
selecting the model order of 50. Fourth, longer window
lengths improved CA in all subproblems, best performance
being obtained with a length of 650 ms. Based on these
results, we settled on parameter setting for all subproblems
that included the use of log band power, from CAR-rerefer-
enced data, with an AR model order of 50 and a window
length of 650 ms.

We also addressed similar issues of parameter optimality
and sensitivity for the listening task. For technical reasons, the
same set of pre-processing parameters had to be used for all
decoders simultaneously. We were satisfied that our CAR, log
and model-order settings chosen in the joystick-task optimi-
zation represented a good general way of extracting high-
gamma features. Therefore, this question boiled down to
verifying whether our chosen window-length, in combination
with these parameters, was also optimal for the listening
decoder. An additional parameter for the listening task is the
temporal lag (between sound delivery and brain response) at
which the listening decoder should be trained and the results
assessed. To address this, we fixed the CAR, log and model
order settings at the optimal values determined for the joy-
stick task, and evaluated the six different window lengths in
combination with temporal offsets from −2 to +2 sec in steps
of 20 ms. The correlation between neural response and music
stimuli at varying lags and window lengths is shown in
figure 6(a) for a univariate decoder. The correlation was
observed to be highest (ρ = 0.34) for the longest window
length of 650 ms and peaked at a lag of approx. 200 ms when
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Figure 5. Cross-validated classification accuracies (%) averaged across subjects 1–6 with error bars indicating ±1 standard error, for solving
three binary classification subproblems with a multivariate classifier. Chance performance would be 50%. From left to right within each
group of bars, the subproblems are movement versus rest (blue), intention versus rest (green), and movement versus intention (red). To
illustrate the sensitivity of the decoder to the preprocessing parameters, each of the panels shows the effect of varying one of the parameters
away from the global optimal combination.

Figure 6. (a) Correlation coefficients of univariate auditory features and music RMS, across subjects 1–6, at leads and lags of 0 to 2 s and
window lengths 150–650 ms. (b) Correlation coefficients for subjects 1–6 (each represented by a different symbol shape) and all window
lengths, at a constant lag of 200 ms, estimated by a multivariate and a univariate regression. Color represents the window length used for the
analysis, corresponding to the colors in (a).
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averaged across subjects (50 ms of which can be accounted
for by the softwareʼs latency in producing stimuli).

3.2. Session-to-session generalization

We then wished to assess the ability of the decoders to gen-
eralize to a second day. This is an important issue, because
changes in arousal or other brain states on a timescale of
hours or days may be substantial. Classifiers trained on the
first dayʼs session were tested on second-day data, which
were available (still from tasks performed separately) for 4 of
the original six subjects. This performance was compared
against the performance from a single-fold offline analysis of
the day-1 data. The results for intention and movement
decoding are shown in figure 8(b), where each symbol
represents a different combination of subject and subproblem.
Symbol shape denotes the subproblem as indicated in the
legend. There is a drop in performance of 6.8 percentage
points (on average across all subjects and subproblems) when
transferring a trained multivariate classifier from one day to
the next. For the univariate decoder, this average drop is
larger (11.4 percentage points). The paired t-test between the
multivariate decoding accuracies from day 1 and day 2 result
in a p-value >0.05, both for motor intention and motor
execution. This shows the robustness of a multivariate
decoder for day-to-day transfer. However, the paired t-test
between the univariate decoding accuracies from day 1 and
day 2 result in a p-value <0.05 for motor intention and p-
value >0.05 for motor execution. This shows that for the
motor intention processes, the univariate decoder is less
robust for day-to-day generalization.

We also wished to confirm our hypothesis that individual
decoders that were trained on separate tasks would be able to
deliver reliable outputs, separately as well as simultaneously.
The continuous decoding performance was quantified in
terms of decoder sensitivity and specificity for both multi-
variate and univariate analysis. Sensitivity and specificity
measurement on the continuous decoding quantifies the
ability of the decoder to detect or reject the intention (or
movement) states not only in contrast to the marked rest
states, but also in contrast to the other ongoing states (inter-
trial, movement (or intention) and feedback) in an analysis
where one data point was a single time-window rather than a
whole trial. These have been presented in figure 7 (left panel).
Across subjects, the multivariate and univariate decoding
were found to be equally sensitive for intention and move-
ment decoding. However, multivariate decoding was found to
show relatively higher specificity for intention decoding,
while univariate decoding showed higher specificity for
movement decoding. The r2 maps for all the subproblems are
also shown in the right panel of figure 7. The running cor-
relation coefficient between decoder output and music RMS
was calculated using a 20 s sliding buffer to reflect the var-
iation in auditory system decoding accuracy as a function of
time during the song. It is shown in the panel (e) of figure 7.

3.3. Multivariate versus univariate decoding

Our next question required a comparison of the automated
multivariate and expert-guided univariate decoding methods
described in section 2.6. The comparison was performed
using a single-fold analysis of the data from subjects 1–6.

For the listening task, the results are shown in figure 6(b).
The colors denote window size in the same way as indicated
in the adjacent panel (a). Each symbol shape denotes a dif-
ferent subject. We see a clear and consistent advantage for the
univariate method over our chosen multivariate decoding
approach—hence we show results of the univariate approach
in panel (a), and use the univariate approach throughout the
rest of the study for the purpose of auditory decoding.

The results for intention and movement decoding are
shown in figures 8(a) and (b). Across all six subjects, all 3
subproblems, and both days, our multivariate decoding
approach classified the data with an average of 81.5% accu-
racy, whereas our univariate approach was 75.8% accurate.
Note that the univariate approach could also achieve very
high performance levels, depending on the subject—but the
variability across subjects was larger (see figure 8(a)). The
multivariate classifier also produced more consistent results
when generalizing from one day to the other, as we saw above
in section 3.2.

3.4. Amount of required training data

Our next question centered on the impact of the amount of
calibration data on decoding performance. The performance
of a predictor can generally be expected to improve as the
amount of training data increases, although these improve-
ments should diminish with larger data sizes. We investigated
this issue by computing the trial classification accuracies (CA,
as defined in section 2.7 above) in single-fold assessments
where the size of the training fold was either 20, 80, 140, 200,
260 or 320 trials. The results, averaged across subjects for
each subproblem, are shown in figure 9. They display the
expected increasing trend, which seems to level off at around
140 trials—slightly less than half the data we gathered.

3.5. Real-time simultaneous multimodal decoding

In subjects 7–12, we examined the real-time performance of
the system. Here we quantified how well our decoders that
were trained on data from separate tasks (motor intention,
motor execution, auditory) generalize to a second real-time
session in which the tasks are performed simultaneously.
Furthermore, we wanted to determine whether decoders that
were trained on data from discrete trials, with brain state
classes considered separately against the rest state, performed
well in a continuous real-time setting where they must dis-
tinguish their preferred state from both rest and from other
(non-preferred/non-rest) states?

Based on the optimization outcomes from phase I and II,
we used the multivariate decoder for intention and movement
decoding and a univariate decoder for auditory decoding.
Where possible, we also performed a second real-time run
with the univariate decoder. This was possible for subjects 9,
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Figure 7. The r2 maps for intention, movement and auditory processing are shown for subjects 1–6. Top row shows the topographies for
intention, second row shows topographies for movement and third row shows topographies for auditory processing. The electrode selected
for univariate auditory analysis is marked with a green circle. Lower panels (a) and (b) show the sensitivity and specificity for the simulated
real-time decoding across subjects 1–6, for both multivariate (m) and univariate (u) intention versus rest (IR) and movement versus rest (MR).
Lower panel (c) shows the running correlation coefficient for auditory versus music RMS, across 1–6 subjects, using a 20 s window at a time.

Figure 8. (a) Multivariate versus univariate decoding classification accuracy for day 1 and day 2 test data of subjects 1–6. Each symbol
represents a subject and each symbol shape represents a decoding subproblem as described in the legend. The filled shapes represent results
of day 1; the unfilled shapes represent day 2. (b) The multivariate and univariate classification is shown for day 1 versus day 2. Filled shapes
represent multivariate results and the unfilled shapes represent the univariate results. (c) Multivariate versus univariate decoding performance
shown by correlation coefficients of auditory features and music RMS for subjects 1–6 (excluding subject 4).
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10 and 12. Subject 11 lacked coverage of motor and pre-
motor areas. For the remaining two subjects (7 and 8) a
second run was not possible due to time constraints, so we re-
performed the analysis retrospectively—however, the order of
transfer from training to test was always strictly causal and no
re-optimization of the decoder was allowed.

An example of the real-time decoding performance can
be seen in Supplementary Movie (S1). The movie was cap-
tured (with the patientʼs consent) using the Camtasia software
application, which captured live video footage of the patient
performing the task and also captured the computer screen
that contained real-time visualizations for the patient and for
the investigator.

The task-related r2 s were estimated for all the electrode
channels of the training data. The results are presented in
figure 10. The overall CA for these subjects is shown in panel
(a). Again, we found that multivariate decoding provided
higher performance for motor decoding (median CA across
subjects was 80.4% for intention decoding and 86.8% for
movement decoding). Panel (b) shows univariate auditory
decoding performance for these subjects using the non-para-
metric Spearmanʼs correlation that was calculated between
gamma features and music RMS. These results demonstrate

that it is possible to accurately decode movement intention,
movement, and auditory processing concurrently and in
real time.

Figure 11 presents a quantitative analysis of the trial-
based classification performance for subjects 7–12 during
calibration (phase III) and real-time testing (phase IV). The
figure is comparable to figure 8, which showed results in the
same format for subjects 1–6 (phases I and II). The difference
between these analyses is that only subjects 7–12 performed
the two tasks simultaneously in their second session. As in
section 3.3, we find that multivariate decoding (average
accuracy 76.5%) resulted in higher performance than uni-
variate decoding (70.4%) of intention and execution of
movement.

In common with our phase I–II results, we observe a drop
in performance when we force our decoders to generalize
from one day to the next. However, this time the drop in
performance is larger for the multi-variate decoder (13.9
percentage points) than for the univariate decoder (5.4 per-
centage points). This is the reverse of the pattern we found
before, in phases I–II. We can interpret this by considering
that we are now demanding that our decoder generalize
between data sets that are more heterogeneous than before.

Figure 9. The effect of the amount of training data on decoding performance is shown for the three motor-based decoding subproblems: (a)
intention versus rest, (b) movement versus rest, (c) movement versus intention.

Figure 10. (a) Multivariate and univariate classification accuracy (CA) is shown for motor decoding for subjects 7–12 as tested on data from
day 1. Each symbol represents a decoding subproblem. (b) The correlation coefficient (r) for auditory decoding versus music RMS from day
1 is shown for subjects 7–12. Across all subjects, the average r value was 0.3. (c, d, e) are the r2 maps for intention, movement and auditory
tasks, for subjects 7–12. Subject 11 did not have motor coverage.
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Before, the decoder was both trained and tested on distribu-
tions of high-gamma features measured from the joystick task
performed in isolation. Now, the decoders are still being
trained on data measured during the joystick task alone, but
tested on data measured with a concurrent listening task.
Training and test set distributions are therefore different. As
we pointed out in section 2.6, our univariate decoder uses
only one electrode, and hence only captures information from
a highly localized cortical region. It will therefore suffer little
interference from the activity of brain areas that are func-
tionally unrelated to its primary task. By contrast, a multi-
variate decoder is free to use information from the whole grid,
even from brain areas that are functionally unrelated to its
primary task, and it may do so if this serves to suppress noise.
For example, under constant quiet conditions, a multivariate
decoder trained to identify motor intention might incorporate
information from auditory cortex electrodes: it may be that
auditory-cortex activity provides a good baseline against
which to measure fluctuations in premotor cortex activity.
This may generalize well, but only as long as the conditions
remain quiet.

An example of the real-time decoding for subject 12 is
shown in figure 12. It presents the motor and auditory pro-
cessing real-time decoding as estimated on separate tasks as
well as during simultaneous tasks, predicted by the univariate
approach. (a) and (b) show the univariate decoding on
decoders that were trained separately and tested in real-time
separately on each of the intention-movement and listening
tasks. (c) shows the univariate decoding obtained when the
intention-movement was performed simultaneously with the
listening task, on the same day. The time segments during
which intention to move was being expected, has been indi-
cated by semi-transparent blue back-panels in (a) and (c).

While the time segments during which movement execution
was being expected have been indicated by semi-transparent
red back-panels in (a) and (c).

Finally, sensitivity and specificity was performed with
the phase-IV simultaneous decoding data. The univariate
analysis was performed in parallel as a backup alternative.
The overall classification and the sensitivity and specificity
outcomes are shown in figure 13 for subjects 7–12. This result
shows the ability of the decoders to not only detect a change
in state aptly but also the ability to reject rest and other
changes from that state. This was the first indication that the
decoding features apparently are quite unique for detection of
intention, movement. For example, even though the training
data for intention versus rest did not include movement per-
iods, the real-time decoding based on the intention versus rest
decoder was able to contrast intention and movement suffi-
ciently well.

4. Discussion

In this study, we set out to develop, implement and test
algorithms and procedures that allow us to decode from
concurrently performed tasks, within the structure of a com-
mon hardware and software framework. Previous studies
[12, 16, 22, 23, 35, 37, 38, 47] have demonstrated retro-
spectively that individual brain processes, such as movement,
movement planning or auditory processing can be reliably
decoded from ECoG signals. However, it was not clear to
what extent these decoding models could be applied in real
time or generalize over time. It was also unclear whether they
are independent enough to be transferred to more unpredict-
able multi-modal decoding environments. The use of high-

Figure 11. Simultaneous decoding performance and generalization results for subjects 7–12: (a) multivariate versus univariate intention of
movement and movement execution decoding classification accuracy for data from the calibration day and for data from the subsequent day
on which simultaneous decoding took place. Each symbol shape represents a different subproblem as indicated in the legend. The filled
shapes represent results of day 1; the unfilled shapes represent day 2. For each day and each subproblem, multiple symbols represent multiple
subjects. (b) The same results as in (a) are displayed here in a different manner to highlight the difference in performance between the
calibration day versus the simultaneous decoding day. Filled shapes represent multivariate results and the unfilled shapes represent the
univariate results. (c) The auditory decoding performance, measured by correlation coefficient of the decoded signal versus the music RMS,
is shown for calibration day when the listening task was performed separately, compared to simultaneous day when the listening task was run
simultaneously with the intention-movement task. Note: subject 11 did not have motor coverage and subject 10 did not perform the two tasks
simultaneously in real-time in any one session.
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gamma power modulation for such decoding has been found
especially useful and so we concentrated only on this feature
in the current study. The modulation in high-gamma power
correlates with the firing activity of large neuronal popula-
tions. At a smaller scale, the firing of individual neurons has
been found to be a good predictor of movement execution,
movement planning and movement kinematics
[29, 30, 48, 49]. So far, however, it has been difficult to use
such systems long-term without frequent re-calibration
[31, 49]. ECoG high-gamma features, on the other hand,
strike a good balance between invasiveness, decoding quality
and stability [4, 35]. As recording technology continues to
miniaturize and implantation techniques continue to improve,
the barriers to long-term implantation of ECoG grids can be
expected to decrease. In the last few years we have seen many
advances in the development of ECoG electrodes towards a
smaller-scale, higher-density, more-flexible, more-durable,
wireless ideal [50–58]. With continuing improvements, it is
plausible that long-term implantation of ECoG systems may
become a realistic option for monitoring, functional restora-
tion or possibly even treatment of a wide variety of brain
disorders.

Our results demonstrate that the ECoG gamma features
allow single-trial real-time decoding of movement planning,

movement execution and auditory processing with a high
sensitivity and specificity. The decoders for each of these
states are separable, in the sense that they can be optimized as
separate models, yet still perform well when transferred to a
multi-modal problem setting: during optimization, each class
is distinguished only against rest, and auditory data and motor
planning/execution data are gathered in separate sessions; by
contrast, in testing, motor planning (for example) is compared
against motor execution or against rest, and while the auditory
system is concurrently active. The results are encouraging as
they demonstrate the possibility of real-time simultaneous
monitoring of multiple brain systems based on a modular
combination of simpler single-task training protocols.

The quantitative results of our optimization procedures
provide insight into the sensitivity of such systems to certain
pre-processing parameters. In particular, the use of a com-
mon-average reference improved results substantially across
practically all of our analyses relative to data that were
referenced to only one reference electrode. Also, temporal
smoothing played a key role in improving the results: both
our subjective judgments of traces of the kind plotted in
figure 12 and the quantitative results shown in figures 5 and 6
indicate that longer temporal windows improve decoding
performance. Naturally there is a trade-off between

Figure 12. An example of real-time separate as well as real-time simultaneous decoding for subject 12 as captured with the univariate
approach. The decoded neural output and the expected output are shown for intention-movement task in (a) and (c). The decoded neural
output for listening task is shown in (b) and (d). The semi-transparent blue back-panels in (a) and (c) denote the segments during which
intention to move was being expected and the red back-panels in (a) and (c) denote time segments when movement execution was being
expected. The decoding results in (a) was obtained when the intention-movement task was executed separately. Decoding in (b) was obtained
when the listening task was run separately. (c) Shows the real-time intention and movement decoding when the task of intention-movement
and listening to music were run simultaneously. (d) Shows the auditory decoding obtained during that time.
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performance and responsiveness in such systems: the longer
the window-length, the more accurate the results may be but
the less rapidly the real-time system can respond to temporal
dynamics of the brainʼs state. In addition, it can be seen that
the increase in performance is smaller for window lengths
longer than 350 ms as compared to the larger increase in
performance when we increased the window length from 150
ms to 350 ms. Thus, the optimal setting should rely in part by
suggestions from statistical analysis but also be the demands
of a particular application. Our results also suggest that the
amount of training data could have been reduced to around
half (to 150 trials, or 15 min not counting interruptions)
without an appreciable impact on the quality of intention or
movement decoding.

We would like to point out that in its current form this
study does not tell us how general our results are across
various brain processes or data acquisition setups. Even
though we observed similarity in the relationship between
decoding performance and parameter selection across our
three tasks, it is possible that these were suitable only for the
particular covert and overt tasks under study (motor intention,
motor execution and auditory processing). These may benefit
from fine-tuning to the other brain processes being studied
and the signal-to-noise ratio of data acquired under different
settings.

In results sections 3.3 and 3.5, we observed that the
multivariate approach generally performs better than the
univariate approach in decoding intention and movement. The
multivariate decoder generalized better than the univariate
decoder to a second day when the task remained the same.

However, it suffered a larger drop in performance than the
univariate approach when generalizing to a later session
involving a concurrent listening task. We explained this in
terms of the multivariate classifierʼs ability to use signals from
brain areas that are functionally unrelated to its primary task
(for example, a decoder for intention-to-move might include
information from auditory cortex). This strategy may be
effective when the unrelated brain area (the auditory cortex in
this example) displays consistent patterns of activity, and
thereby provides a useful baseline against which to measure
the activity of more directly relevant brain areas (premotor
cortex). However, the strategy may become counter-
productive as soon as the unrelated brain area becomes
simultaneously involved in an unforeseen task (for example,
listening to music). If the multivariate decoder performs better
than the univariate decoder to begin with, but loses more
during generalization to more complex measurement condi-
tions, can we make a final decision as to which is preferable
for a multi-system brain monitoring application? One
approach would be to assess the decoders’ respective per-
formance levels on just the simultaneous decoding session: if
we do this we find that their performance is very similar (70%
accuracy for multivariate, 68.5% for univariate, averaged
across subjects and subproblems). However, we must
remember that these results were obtained with only one
known form of competing information processing (listening
to music) beside the primary joystick task. If we were
building a brain monitoring system, we would want it to
perform well even when the brain had to process yet another
kind of information (for example, monitoring the subjectʼs
intention to move while background music is playing and the
subject is experiencing pain). In the translation of our deco-
ders from a controlled experimental study to a more realistic
brain-monitoring application, it seems likely that a univariate
approach might be more suitable in the context of a larger
number of unforeseen interfering brain processes.

It is worth noting that the multivariate method may be
more attractive in practical situations: multivariate prediction
is a semi-automated method, while the univariate method as
employed here is an approach that at least in part depends on
subjective judgments. As the process depends on a very large
number of variables (e.g., location of the grid, location of the
epileptic focus, brain system modality, results from other
functional mapping, or other characteristics of the subject, see
section 2.6), it has been difficult, and will likely remain dif-
ficult, to formalize the process by which the different sources
were used in the decision process.

Even when we want to decode rich information sources
distributed over complex brain networks, a highly localized
approach such as our univariate decoding strategy may still
yield good results: Wessberg et al [34] observed in non-
human primates that motor control signals from single-neuron
electrodes appeared concurrently in multiple areas of frontal
and parietal cortex, and that any one of these areas could
individually generate a one-dimensional hand trajectory in
real time.

This further evidence for narrow spatial localization of
function in ECoG suggests that, despite our promising results,

Figure 13. Online continuous decoding results. Upper panels:
multivariate versus univariate classification accuracy (CA) for
intention and movement decoding. Each symbol represents a subject.
Lower panels: sensitivity versus specificity is shown for multivariate
as well as univariate approaches.
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the technology for such brain monitoring applications is still
evolving. We see large variations in performance between
subjects, which may in part be due to the chance nature of the
positioning of ECoG electrodes, spaced coarsely 1 cm apart,
which may therefore miss or only partially cover relevant
highly-localized functional areas. We hypothesize that higher-
density ECoG recordings—such as those of Wang et al [59]
—might prove superior in multi-modal decoding
performance.

Our study highlighted challenges and areas of improve-
ment for developing real-time decoding systems with ECoG
signals. It should be noted that ECoG research is currently
primarily feasible only in patients with epilepsy who are
candidates for surgical resection and undergo invasive ECoG
monitoring. This means that the extent of grid coverage and
placement is determined by the clinical needs of the patient
rather than the needs of our research. Hence, grid coverage is
variable across subjects and often does not cover all the areas
of interest for a particular study. Moreover, during the
experimentation period, the patients are recovering from a
brain surgery, are undergoing withdrawal of their anti-epi-
leptic medications and, consequently, are more susceptible to
seizures. These factors affect the physical and cognitive
condition and level of cooperation of each subject. In addi-
tion, there are variations in the grid laterality, hand dom-
inance, age, location of epileptic focus, across the subjects.
Finally, some of the patients may have some degree of
functional or structural reorganization based on the etiology
of their epilepsy. Overall, these factors can make human
ECoG experiments less controlled than non-invasive neu-
roscientific studies in healthy human subjects or invasive
studies in animals. At the same time, in these respects, our
present study is similar to the many other ECoG-based studies
that have been described in the literature
[16–18, 22, 23, 37, 39]. Despite the issues described above,
the results presented in our present and other ECoG studies
are usually consistent with expectations based on the general
human neuroanatomy or on results from other imaging
modalities.

To mitigate some of the limitations described above, and
to acquire data and test a system under such conditions, one
needs a computationally inexpensive, portable, robust, and
semi-supervised system, with few free parameters. The sys-
tem should be able to be configured rapidly for each indivi-
dual subject—perhaps even set up at multiple times of the day
—while minimizing inconvenience to the subject and inter-
ruptions in their medical treatment. Developing and inte-
grating automated artifact removal, such as for epileptiform
spikes, seizures, and other invariant features, may improve the
overall real-time signal processing pipeline.

Further research questions that would drive the devel-
opment of better multi-modal brain-monitoring systems will
have to include investigation of how decoding models esti-
mated from synchronous (cue-based) paradigms can best be
transferred to asynchronous (non-cue-based) real-time
decoding. The ability to transfer decoding models in this way
would be very useful for neural engineering applications: a
better understanding of the overlap and sharing of structural

and functional networks would facilitate development of
brain-computer interface technology for the practical repla-
cement of damaged brain functions.

In our study, we describe encouraging progress towards
simultaneous real-time decoding of multiple brain systems.
The methods and results produced in this study demonstrate
for the first time that movement intention and execution can
be decoded in real time simultaneously with the decoding of
auditory processing. This demonstration advances the
understanding of real-time decoding for future performance
monitoring and augmentation systems with relevance to a
broad range of medical and non-medical applications.
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